Crossref journal-article
Annual Reviews
Annual Review of Condensed Matter Physics (22)
Abstract

The question of whether the dramatic slowing down of the dynamics of glass-forming liquids near the structural glass transition is caused by the growth of one or more correlation lengths has received much attention in recent years. Several proposals have been made for both static and dynamic length scales that may be responsible for the growth of timescales as the glass transition is approached. These proposals are critically examined with emphasis on the dynamic length scale associated with spatial heterogeneity of local dynamics and the static point-to-set or mosaic length scale of the random first-order transition theory of equilibrium glass transition. Available results for these length scales, obtained mostly from simulations, are summarized, and the relation of the growth of timescales near the glass transition with the growth of these length scales is examined. Some of the outstanding questions about length scales in glass-forming liquids are discussed, and studies in which these questions may be addressed are suggested.

Bibliography

Karmakar, S., Dasgupta, C., & Sastry, S. (2014). Growing Length Scales and Their Relation to Timescales in Glass-Forming Liquids. Annual Review of Condensed Matter Physics, 5(1), 255–284.

Authors 3
  1. Smarajit Karmakar (first)
  2. Chandan Dasgupta (additional)
  3. Srikanth Sastry (additional)
References 112 Referenced 144
  1. 10.1515/9780691213941 / Metastable Liquids by Debenedetti P (1997)
  2. 10.1103/RevModPhys.83.587
  3. 10.1016/0022-3697(88)90002-9
  4. {'key': 'B4', 'first-page': '645', 'volume': '22', 'author': 'Vogel H', 'year': '1921', 'journal-title': 'Z. Phys.'} / Z. Phys. by Vogel H (1921)
  5. 10.1111/j.1151-2916.1925.tb16731.x
  6. {'key': 'B6', 'first-page': '166', 'volume': '9', 'author': 'Tammann D', 'year': '1925', 'journal-title': 'J. Soc. Glass Technol.'} / J. Soc. Glass Technol. by Tammann D (1925)
  7. 10.1038/ncomms2797
  8. 10.1021/cr60135a002
  9. 10.1063/1.1696442
  10. 10.1103/PhysRevLett.109.095705
  11. 10.1103/RevModPhys.49.435
  12. {'key': 'B12', 'volume-title': 'Spin Glasses and Random Fields', 'author': 'Young AP', 'year': '1998'} / Spin Glasses and Random Fields by Young AP (1998)
  13. 10.1007/s10955-006-9103-1
  14. Garrahan JP, Sollich P, Toninelli C. 2011. See Ref. 112, pp. 341–66 (10.1093/acprof:oso/9780199691470.003.0010)
  15. {'key': 'B15', 'first-page': '021013', 'volume': '1', 'author': 'Keys AS', 'year': '2011', 'journal-title': 'Phys. Rev. X'} / Phys. Rev. X by Keys AS (2011)
  16. Liu AJ, Nagel SR, van Saarloos W, Wyart M. 2011. See Ref. 112, pp. 298–336 (10.1093/acprof:oso/9780199691470.003.0009)
  17. Barrat J-L, Lemaitre A. 2011. See Ref. 112, pp. 265–93
  18. 10.1146/annurev.physchem.58.032806.104653
  19. 10.1146/annurev.physchem.51.1.99
  20. Cipellitti L, Weeks EW. 2011. See Ref. 112, pp. 110–43
  21. Harrowell P. 2011. See Ref. 112, pp. 229–59 (10.1093/acprof:oso/9780199691470.003.0007)
  22. 10.1103/PhysRevLett.99.060604
  23. 10.1103/PhysRevLett.79.2827
  24. 10.1126/science.287.5453.627
  25. 10.1103/PhysRevE.60.3107
  26. 10.1103/PhysRevLett.97.115704
  27. 10.1063/1.4790138
  28. 10.1103/PhysRevE.72.011202
  29. 10.1209/0295-5075/15/3/013
  30. 10.1016/S0022-3093(02)01461-8
  31. 10.1088/0953-8984/12/29/305
  32. 10.1103/PhysRevE.66.030101
  33. 10.1103/PhysRevE.79.051502
  34. 10.1103/PhysRevLett.95.265701
  35. 10.1103/PhysRevLett.105.217801
  36. 10.1103/PhysRevE.83.051501
  37. 10.1063/1.4769256
  38. 10.1073/pnas.0811082106
  39. 10.1103/PhysRevLett.97.195701
  40. 10.1063/1.2721554
  41. 10.1093/acprof:oso/9780199235346.001.0001
  42. 10.1103/RevModPhys.76.785
  43. 10.1063/1.4792356
  44. 10.1103/PhysRevLett.102.025702
  45. 10.1103/PhysRevB.36.8552
  46. 10.1103/PhysRevA.35.3072
  47. 10.1103/PhysRevB.36.5388
  48. 10.1103/PhysRevA.37.4439
  49. 10.1103/PhysRevB.37.5342
  50. 10.1088/0305-4470/22/5/003
  51. 10.1103/PhysRevB.38.4881
  52. 10.1103/PhysRevA.40.1045
  53. 10.1063/1.1796231
  54. 10.1209/epl/i2003-00303-0
  55. 10.1038/nphys2133
  56. 10.1103/PhysRevE.85.011102
  57. 10.1103/PhysRevLett.99.215701
  58. 10.1038/nmat2293
  59. 10.1038/ncomms1974
  60. 10.1140/epje/i2012-12113-y
  61. 10.1103/PhysRevLett.89.195701
  62. 10.1103/PhysRevE.83.051505
  63. 10.1103/PhysRevLett.104.105701
  64. 10.1103/PhysRevB.28.784
  65. 10.1063/1.4790515
  66. 10.1088/0953-8984/21/3/035117
  67. 10.1016/0378-4371(95)00140-3
  68. 10.1063/1.470495
  69. 10.1016/0378-4371(95)00374-6
  70. 10.1103/PhysRevLett.83.472
  71. 10.1088/0953-8984/17/50/R01
  72. 10.1088/1751-8113/44/3/035001
  73. 10.1016/j.physa.2011.11.020
  74. 10.1007/978-3-642-81534-8
  75. 10.1103/PhysRevE.74.011113
  76. 10.1103/PhysRevLett.101.095501
  77. 10.1103/PhysRevLett.104.205704
  78. 10.1126/science.1120714
  79. 10.1103/PhysRevE.76.041510
  80. 10.1103/PhysRevE.52.1694
  81. 10.1143/JPSJ.66.2545
  82. 10.1016/S0378-4371(98)00376-8
  83. 10.1088/0953-8984/21/20/203103
  84. 10.1103/PhysRevLett.91.055701
  85. 10.1007/BF01293604
  86. 10.1103/PhysRevLett.73.1376
  87. 10.1103/PhysRevLett.101.267802
  88. 10.1103/PhysRevLett.105.019801
  89. 10.1103/PhysRevLett.105.015701
  90. 10.1038/nphys2437
  91. 10.1038/nphys1050
  92. 10.1103/PhysRevE.63.045102
  93. 10.1103/PhysRevLett.108.225506
  94. 10.1103/PhysRevLett.108.035701
  95. 10.1103/PhysRevE.87.042305
  96. 10.1103/PhysRevLett.111.165701
  97. 10.1038/nphys1025
  98. 10.1063/1.3265983
  99. 10.1088/1742-5468/2007/08/L08003
  100. 10.1103/PhysRevLett.105.025501
  101. 10.1088/1751-8113/40/11/F01
  102. 10.1063/1.480541
  103. 10.1016/S0022-3093(00)00225-8
  104. 10.1103/PhysRevE.83.061101
  105. 10.1103/PhysRevE.86.061502
  106. 10.1063/1.3257739
  107. 10.1103/PhysRevLett.106.115705
  108. 10.1103/PhysRevB.38.373
  109. 10.1039/b008749l
  110. {'key': 'B110', 'first-page': '041402', 'volume': '69', 'author': 'Brumer Y', 'year': '2004', 'journal-title': 'Phys. Rev. E'} / Phys. Rev. E by Brumer Y (2004)
  111. 10.1073/pnas.0808375105
  112. 10.1093/acprof:oso/9780199691470.001.0001
Dates
Type When
Created 11 years, 7 months ago (Jan. 14, 2014, 6:54 p.m.)
Deposited 3 years, 10 months ago (Oct. 8, 2021, 5:41 a.m.)
Indexed 4 weeks, 1 day ago (Aug. 6, 2025, 9 a.m.)
Issued 11 years, 6 months ago (March 1, 2014)
Published 11 years, 6 months ago (March 1, 2014)
Published Print 11 years, 6 months ago (March 1, 2014)
Funders 0

None

@article{Karmakar_2014, title={Growing Length Scales and Their Relation to Timescales in Glass-Forming Liquids}, volume={5}, ISSN={1947-5462}, url={http://dx.doi.org/10.1146/annurev-conmatphys-031113-133848}, DOI={10.1146/annurev-conmatphys-031113-133848}, number={1}, journal={Annual Review of Condensed Matter Physics}, publisher={Annual Reviews}, author={Karmakar, Smarajit and Dasgupta, Chandan and Sastry, Srikanth}, year={2014}, month=mar, pages={255–284} }