Abstract
Weyl semimetals are conductors whose low-energy bulk excitations are Weyl fermions, whereas their surfaces possess metallic Fermi arc surface states. These Fermi arc surface states are protected by a topological invariant associated with the bulk electronic wave functions of the material. Recently, it has been shown that the TaAs and NbAs classes of materials harbor such a state of topological matter. We review the basic phenomena and experimental history of the discovery of the first Weyl semimetals, starting with the observation of topological Fermi arcs and Weyl nodes in TaAs and NbAs by angle and spin-resolved surface and bulk sensitive photoemission spectroscopy and continuing through magnetotransport measurements reporting the Adler–Bell–Jackiw chiral anomaly. We hope that this article provides a useful introduction to the theory of Weyl semimetals, a summary of recent experimental discoveries, and a guideline to future directions.
References
107
Referenced
316
{'key': 'B1', 'first-page': '11', 'volume': '51', 'author': 'Wilczek F', 'year': '1998', 'journal-title': 'Phys. Today'}
/ Phys. Today by Wilczek F (1998){'key': 'B2', 'volume-title': 'Basic Notions of Condensed Matter Physics', 'author': 'Anderson PW', 'year': '1984'}
/ Basic Notions of Condensed Matter Physics by Anderson PW (1984)10.1038/nmat1849
10.1103/RevModPhys.82.3045
10.1146/annurev-conmatphys-062910-140432
10.1103/RevModPhys.83.1057
10.1093/acprof:oso/9780199564842.001.0001
-
8. Turner AM, Vishwanath A. 2013. Beyond band insulators: topology and semi-metals and interacting phases. arXiv:1301.0330
(
10.1016/B978-0-444-63314-9.00011-1
) - 9. Hasan MZ, Xu S-Y, Neupane M. 2015.Topological Insulators, Fundamentals and Perspectives, ed. F Ortmann, S Roche, SO Valenzuela, pp. 55–100. San Francisco: John Wiley & Sons
10.1146/annurev-conmatphys-031113-133841
10.1088/0031-8949/2015/T164/014001
10.1007/BF01339504
10.1103/PhysRev.52.365
10.1007/BF00629569
10.1016/0370-2693(83)91529-0
10.1088/1367-2630/9/9/356
10.1103/PhysRevB.83.205101
10.1103/PhysRevB.84.075129
10.1103/PhysRevLett.107.127205
10.1103/PhysRevB.84.235126
10.1103/PhysRevLett.107.186806
10.1103/PhysRevB.86.115208
10.1126/science.1201607
10.1103/Physics.4.36
10.1103/Physics.8.84
10.1038/ncomms8373
{'key': 'B27', 'first-page': '011029', 'volume': '5', 'author': 'Weng H', 'year': '2015', 'journal-title': 'Phys. Rev. X'}
/ Phys. Rev. X by Weng H (2015)10.1126/science.aaa9297
10.1126/science.1256742
10.1038/nphys3437
-
31. Xu S-Y, Belopolski I, Sanchez DS, Guo C, Chang G, et al. 2015.Sci. Adv.13:e1501092
(
10.1126/sciadv.1501092
) {'key': 'B32', 'first-page': '031013', 'volume': '5', 'author': 'Lv BQ', 'year': '2015', 'journal-title': 'Phys. Rev. X'}
/ Phys. Rev. X by Lv BQ (2015)10.1038/nphys3426
10.1126/science.aaa9273
10.1103/PhysRevLett.116.066802
{'key': 'B36', 'first-page': '1054504', 'volume': '86', 'author': 'Meng T', 'year': '2012', 'journal-title': 'Phys. Rev. B'}
/ Phys. Rev. B by Meng T (2012)10.1103/PhysRevB.92.035153
- 38. Li Y, Haldane FDM. 2015. Topological nodal Cooper pairing in doped Weyl metals. arXiv:1510.01730
10.1103/PhysRevB.85.205104
10.1103/PhysRevLett.109.136402
10.1103/PhysRevB.85.214434
10.1016/j.ssc.2013.11.004
10.1103/PhysRevB.92.241108
10.1103/PhysRevLett.115.087002
10.1126/science.1245085
10.1103/PhysRevB.92.075115
10.1038/ncomms4786
10.1038/nmat3990
10.1103/PhysRevLett.113.027603
10.1103/PhysRevLett.115.087002
10.1103/PhysRevB.85.035103
10.1103/PhysRevB.90.155316
10.1038/nphys3372
10.1103/PhysRevB.93.121112
10.1073/pnas.1514581113
-
56. Xu S-Y, Alidoust N, Change G, Lu H, Singh B, et al. 2016. Discovery of Lorentz-violating Weyl fermion semimetal state in LaAlGe materials. arXiv:1603.07318
(
10.1126/sciadv.1603266
) - 57. Chang G, Singh B, Xu S-Y, Bian G, Huang S-M, et al. 2016. Theoretical prediction of magnetic and noncentrosymmetric Weyl fermion semimetal states in theR-Al-Xfamily of compounds (R = rare earth, Al = aluminium, X = Si, Ge). arXiv:1604.02124
10.1038/nature15768
10.1038/ncomms10639
10.1103/PhysRevB.92.161107
10.1126/sciadv.1600295
10.1103/PhysRevB.93.201101
10.1103/PhysRevLett.117.066402
10.1103/PhysRevLett.116.066801
10.1016/j.crhy.2013.10.010
10.1103/PhysRevD.86.045001
10.1103/PhysRevLett.114.016806
10.1103/PhysRevB.91.115135
-
69. Beenakker C. 2015.Journal Club for Condensed Matter Physics, commentary posted in August
(
10.1093/oxfordhb/9780198744191.013.35
) 10.1134/S002136401611014X
10.1103/PhysRevLett.116.116803
10.1038/nphys3425
10.1038/ncomms11006
10.1038/nmat4457
10.1088/0256-307X/32/10/107101
10.1103/PhysRevB.93.161112
10.1103/PhysRevLett.115.217601
10.1103/PhysRevLett.116.096801
{'key': 'B79', 'volume-title': 'Anomalies in Quantum Field Theory', 'volume': '91', 'author': 'Bertlmann RA', 'year': '2001'}
/ Anomalies in Quantum Field Theory by Bertlmann RA (2001)10.1103/PhysRev.177.2426
10.1007/BF02823296
10.1142/S0217984906010573
10.1103/PhysRevD.78.074033
10.1103/PhysRevB.88.104412
10.1103/PhysRevLett.113.247203
10.1038/nphys3831
{'key': 'B86', 'first-page': '1503.08179', 'author': 'Xiong J', 'year': '2015', 'journal-title': 'Evidence for the chiral anomaly in the Dirac semimetal Na3 Bi.'}
/ Evidence for the chiral anomaly in the Dirac semimetal Na3 Bi. by Xiong J (2015)- 87. Zhang C, Zhang E, Liu Y, Chen Z-G, Liang S, et al. 2015. Detection of chiral anomaly and valley transport in Dirac semimetals. arxiv:1504.07698
10.1103/PhysRevLett.111.246603
10.1103/PhysRevB.68.104430
{'key': 'B90', 'volume-title': 'Magnetoresistance in Metals', 'author': 'Pippard AB', 'year': '1989'}
/ Magnetoresistance in Metals by Pippard AB (1989)10.1103/PhysRevLett.95.186603
10.1103/PhysRev.104.900
10.1143/JPSJ.41.109
10.1038/ncomms10903
10.1103/PhysRevB.92.075205
{'key': 'B96', 'first-page': '031023', 'volume': '5', 'author': 'Huang X', 'year': '2015', 'journal-title': 'Phys. Rev. X'}
/ Phys. Rev. X by Huang X (2015)10.1038/ncomms10735
10.1088/0953-8984/27/15/152201
10.1103/PhysRevB.92.205134
10.1038/ncomms12492
- 101. Yang X, Liu Y, Wang Z, Zheng Y, Xu Z-A, et al. 2015. Chiral anomaly induced negative magneoresistance in topological Weyl semimetal NbAs. arxiv:1506.03190
10.1103/PhysRevB.92.041203
- 103. Zhang C, Lin Z, Guo C, Xu S-Y, Lee C-C, et al. 2015. Quantum phase transitions in Weyl semimetal tantalum monophosphide. arxiv:1507.06301
10.1007/s11433-016-5798-4
10.1038/ncomms11615
-
106. Jia S, Xu S-Y, Hasan MZ, 2016. Weyl semimetals, Fermi arcs and chiral anomalies (a short review). arXiv:1612.00416
(
10.1038/nmat4787
)
Dates
Type | When |
---|---|
Created | 8 years, 6 months ago (Feb. 22, 2017, 6:46 p.m.) |
Deposited | 3 years, 1 month ago (July 24, 2022, 12:14 p.m.) |
Indexed | 6 days, 6 hours ago (Aug. 23, 2025, 9:30 p.m.) |
Issued | 8 years, 4 months ago (March 31, 2017) |
Published | 8 years, 4 months ago (March 31, 2017) |
Published Print | 8 years, 4 months ago (March 31, 2017) |
@article{Hasan_2017, title={Discovery of Weyl Fermion Semimetals and Topological Fermi Arc States}, volume={8}, ISSN={1947-5462}, url={http://dx.doi.org/10.1146/annurev-conmatphys-031016-025225}, DOI={10.1146/annurev-conmatphys-031016-025225}, number={1}, journal={Annual Review of Condensed Matter Physics}, publisher={Annual Reviews}, author={Hasan, M. Zahid and Xu, Su-Yang and Belopolski, Ilya and Huang, Shin-Ming}, year={2017}, month=mar, pages={289–309} }