10.1146/annurev-conmatphys-030212-184329
Crossref journal-article
Annual Reviews
Annual Review of Condensed Matter Physics (22)
Abstract

The remarkable kinetic slowdown experienced by liquids as they are cooled toward their glass transition is not accompanied by any obvious structural change. Understanding the origin of this behavior is a major scientific challenge. At present, this area of condensed matter theory is characterized by an abundance of divergent viewpoints that attempt to describe well-defined physical phenomena. We review representative theoretical views on the unusual kinetics of liquid supercooling, which fall into two broad competing categories: thermodynamic and kinetic. In the former, an apparent “ideal,” thermodynamic, glass transition caused by rapid loss of entropy in the supercooled liquid underlies kinetic slowdown; in the latter, purely kinetic constraints are responsible for loss of ergodicity. The possible existence of an ideal thermodynamic glass transition is discussed and placed in its proper statistical mechanical context.

Bibliography

Stillinger, F. H., & Debenedetti, P. G. (2013). Glass Transition Thermodynamics and Kinetics. Annual Review of Condensed Matter Physics, 4(1), 263–285.

Authors 2
  1. Frank H. Stillinger (first)
  2. Pablo G. Debenedetti (additional)
References 108 Referenced 239
  1. 10.1088/0034-4885/49/2/002
  2. {'key': 'B2', 'volume-title': 'Glasses and the Vitreous State', 'author': 'Zarzycki J', 'year': '1991'} / Glasses and the Vitreous State by Zarzycki J (1991)
  3. 10.1021/jp953538d
  4. 10.1063/1.1286035
  5. 10.1038/35065704
  6. 10.1142/5948
  7. 10.1038/nmat2304
  8. 10.1016/j.physrep.2009.03.003
  9. 10.1103/RevModPhys.83.587
  10. 10.1021/cr60135a002
  11. 10.1063/1.1673794
  12. 10.1021/ja01315a102
  13. 10.1016/0022-3093(88)90133-0
  14. 10.6028/jres.102.013
  15. 10.1146/annurev.physchem.58.032806.104653
  16. 10.1038/nphys1033
  17. 10.1063/1.1696442
  18. 10.1103/Physics.4.42
  19. 10.1063/1.1744141
  20. 10.1002/andp.18541670203
  21. 10.1039/tf9706600080
  22. 10.1063/1.444938
  23. 10.1016/S0301-4622(03)00089-9
  24. 10.1038/35004689
  25. 10.1080/14786437208229210
  26. 10.1007/BF00660072
  27. 10.1073/pnas.252786999
  28. 10.1103/PhysRevE.59.48
  29. 10.1103/PhysRevB.32.5402
  30. 10.1063/1.1644538
  31. 10.1038/31146
  32. 10.1088/0022-3719/17/33/005
  33. 10.1103/PhysRevA.29.2765
  34. 10.1088/0953-8984/11/10A/002
  35. 10.1103/RevModPhys.76.785
  36. 10.1088/1742-5468/2005/05/P05013
  37. 10.1143/PTP.33.423
  38. 10.1093/oso/9780195140187.001.0001 / Nonequilibrium Statistical Mechanics by Zwanzig R (2001)
  39. 10.1103/PhysRevLett.54.1059
  40. 10.1209/epl/i2002-00259-y
  41. 10.1103/PhysRevA.40.1045
  42. 10.1103/PhysRevB.17.4384
  43. 10.1103/PhysRevLett.55.304
  44. 10.1016/0550-3213(84)90237-2
  45. 10.1073/pnas.97.7.2990
  46. Stevenson JD, Wolynes PJ. 2005.J. Phys. Chem. B109:15093–97 (10.1021/jp052279h)
  47. 10.1063/1.1796231
  48. 10.1038/nphys1050
  49. 10.1088/0953-8984/17/50/R01
  50. 10.1103/PhysRevE.60.3107
  51. 10.1016/S0022-3093(00)00225-8
  52. 10.1063/1.481621
  53. 10.1063/1.1644539
  54. 10.1103/PhysRevA.46.R2984
  55. 10.1103/PhysRevLett.94.175701
  56. 10.1103/PhysRevLett.97.115704
  57. 10.1103/PhysRevE.73.041504
  58. 10.1103/PhysRevLett.89.035704
  59. 10.1073/pnas.0504820102
  60. 10.1146/annurev.physchem.040808.090405
  61. 10.1103/PhysRevLett.53.1244
  62. 10.1103/PhysRevE.48.4364
  63. 10.1007/BF01453764
  64. 10.1073/pnas.1233719100
  65. 10.1063/1.1955527
  66. 10.1021/jp1076438
  67. 10.1146/annurev.physchem.51.1.99
  68. 10.1126/science.287.5453.627
  69. 10.1103/PhysRevLett.81.4915
  70. 10.1103/PhysRevLett.82.5064
  71. 10.1021/jp983967m
  72. 10.1103/PhysRevE.48.207
  73. 10.1103/PhysRevE.50.2064
  74. 10.1103/PhysRevE.53.2995
  75. 10.1093/acprof:oso/9780199691470.001.0001
  76. 10.1063/1.1605094
  77. 10.1038/20406
  78. 10.1103/PhysRevE.70.061504
  79. 10.1103/PhysRevLett.93.135701
  80. 10.1038/nphys1025
  81. 10.1016/j.physa.2009.05.003
  82. 10.1103/PhysRevLett.106.015701
  83. 10.1063/1.1676895
  84. 10.1016/0021-9614(74)90162-1
  85. 10.1063/1.1434997
  86. 10.1103/PhysRevE.83.051501
  87. 10.1103/PhysRevLett.108.035701
  88. 10.1063/1.478337
  89. 10.1103/PhysRevLett.96.225502
  90. 10.1103/PhysRevLett.82.747
  91. 10.1063/1.2041507
  92. 10.1063/1.3524489
  93. 10.1103/PhysRevE.51.4626
  94. 10.1103/PhysRevLett.83.3214
  95. 10.1103/PhysRevLett.84.306
  96. 10.1063/1.480866
  97. 10.1063/1.1672587
  98. 10.1103/PhysRevA.25.978
  99. 10.1103/PhysRevA.28.2408
  100. 10.1088/0953-8984/12/29/324
  101. 10.1103/PhysRevE.60.6507
  102. 10.1088/0953-8984/12/29/325
  103. 10.1103/PhysRevB.31.1954
  104. 10.1103/PhysRevB.24.2613
  105. 10.1063/1.454295
  106. 10.1021/jp030885b
  107. 10.1021/jp046978q
  108. 10.1209/epl/i2000-00248-2
Dates
Type When
Created 12 years, 7 months ago (Jan. 8, 2013, 11:51 p.m.)
Deposited 1 year, 3 months ago (May 4, 2024, 9:41 a.m.)
Indexed 42 minutes ago (Aug. 30, 2025, 11:54 a.m.)
Issued 12 years, 4 months ago (April 1, 2013)
Published 12 years, 4 months ago (April 1, 2013)
Published Print 12 years, 4 months ago (April 1, 2013)
Funders 0

None

@article{Stillinger_2013, title={Glass Transition Thermodynamics and Kinetics}, volume={4}, ISSN={1947-5462}, url={http://dx.doi.org/10.1146/annurev-conmatphys-030212-184329}, DOI={10.1146/annurev-conmatphys-030212-184329}, number={1}, journal={Annual Review of Condensed Matter Physics}, publisher={Annual Reviews}, author={Stillinger, Frank H. and Debenedetti, Pablo G.}, year={2013}, month=apr, pages={263–285} }