Crossref journal-article
Association for Computing Machinery (ACM)
ACM Transactions on Graphics (320)
Abstract

This paper presents a system for performance-based character animation that enables any user to control the facial expressions of a digital avatar in realtime. The user is recorded in a natural environment using a non-intrusive, commercially available 3D sensor. The simplicity of this acquisition device comes at the cost of high noise levels in the acquired data. To effectively map low-quality 2D images and 3D depth maps to realistic facial expressions, we introduce a novel face tracking algorithm that combines geometry and texture registration with pre-recorded animation priors in a single optimization. Formulated as a maximum a posteriori estimation in a reduced parameter space, our method implicitly exploits temporal coherence to stabilize the tracking. We demonstrate that compelling 3D facial dynamics can be reconstructed in realtime without the use of face markers, intrusive lighting, or complex scanning hardware. This makes our system easy to deploy and facilitates a range of new applications, e.g. in digital gameplay or social interactions.

Bibliography

Weise, T., Bouaziz, S., Li, H., & Pauly, M. (2011). Realtime performance-based facial animation. ACM Transactions on Graphics, 30(4), 1–10.

Authors 4
  1. Thibaut Weise (first)
  2. Sofien Bouaziz (additional)
  3. Hao Li (additional)
  4. Mark Pauly (additional)
References 40 Referenced 329
  1. 10.1145/1667239.1667251
  2. 10.1145/1778765.1778777
  3. Black M. J. and Yacoob Y. 1995. Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion. In ICCV 374--381. (10.5555/839277.840053)
  4. 10.1145/311535.311556
  5. 10.1145/1198555.1198596
  6. 10.1145/1778765.1778778
  7. Chai J. X. Xiao J. and Hodgins J. 2003. Vision-based control of 3d facial animation. In SCA. (10.5555/846276.846304)
  8. Chuang E. and Bregler C. 2002. Performance driven facial animation using blendshape interpolation. Tech. rep. Stanford University.
  9. 10.1109/34.927467
  10. 10.5555/524467.796028
  11. DeCarlo D. and Metaxas D. 1996. The integration of optical flow and deformable models with applications to human face shape and motion estimation. In CVPR. (10.5555/794190.794604)
  12. 10.1023/A:1008122917811
  13. Ekman P. and Friesen W. 1978. Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press. (10.1037/t27734-000)
  14. 10.5555/791215.791488
  15. Furukawa Y. and Ponce J. 2009. Dense 3d motion capture for human faces. In CVPR. (10.1109/CVPRW.2009.5206868)
  16. 10.1145/1015706.1015755
  17. Guenter, B., Grimm, C., Wood, D., Malvar, H., and Pighin, F. 1993. Making faces. IEEE Computer Graphics and Applications 13, 6--8. / IEEE Computer Graphics and Applications / Making faces by Guenter B. (1993)
  18. 10.1145/1477926.1477927
  19. 10.5555/1272690.1272712
  20. 10.1109/34.216724
  21. 10.1145/1618452.1618521
  22. 10.1145/1778765.1778769
  23. 10.1007/s00371-005-0291-5
  24. 10.1109/TVCG.2010.23
  25. Lu P. Nocedal J. Zhu C. Byrd R. H. and Byrd R. H. 1994. A limited-memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing.
  26. 10.5555/2383847.2383873
  27. McLachlan G. J. and Krishnan T. 1996. The EM Algorithm and Extensions. Wiley-Interscience.
  28. 10.1145/882262.882269
  29. 10.1145/1185657.1185856
  30. Pighin, F., Szeliski, R., and Salesin, D. 1999. Resynthesizing facial animation through 3d model-based tracking. ICCV 1, 143--150. / ICCV / Resynthesizing facial animation through 3d model-based tracking by Pighin F. (1999)
  31. Roberts S. 1959. Control chart tests based on geometric moving averages. In Technometrics 239250. (10.2307/1266443)
  32. 10.1111/1467-9868.00196
  33. Tipping M. E. and Bishop C. M. 1999. Mixtures of probabilistic principal component analyzers. Neural Computation 11. 10.1162/089976699300016728 (10.1162/089976699300016728)
  34. Viola P. and Jones M. 2001. Rapid object detection using a boosted cascade of simple features. In CVPR.
  35. Weise T. Leibe B. and Gool L. V. 2008. Accurate and robust registration for in-hand modeling. In CVPR. (10.1109/CVPR.2008.4587832)
  36. Weise T. Li H. Gool L. V. and Pauly M. 2009. Face/off: Live facial puppetry. In SCA. 10.1145/1599470.1599472 (10.1145/1599470.1599472)
  37. Williams L. 1990. Performance-driven facial animation. In Comp. Graph. (Proc. SIGGRAPH 90). 10.1145/97879.97906 (10.1145/97879.97906)
  38. 10.1145/1731047.1731055
  39. 10.5555/1032634.1032919
  40. 10.1145/1015706.1015759
Dates
Type When
Created 14 years ago (July 26, 2011, 10:17 a.m.)
Deposited 2 months, 1 week ago (June 18, 2025, 7:06 a.m.)
Indexed 3 weeks, 3 days ago (Aug. 2, 2025, 12:35 a.m.)
Issued 14 years, 1 month ago (July 1, 2011)
Published 14 years, 1 month ago (July 1, 2011)
Published Online 14 years, 1 month ago (July 25, 2011)
Published Print 14 years, 1 month ago (July 1, 2011)
Funders 1
  1. Swiss National Science Foundation 10.13039/501100001711 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels10
    1. Schweizerischer Nationalfonds
    2. Swiss National Science Foundation
    3. Fonds National Suisse de la Recherche Scientifique
    4. Fondo Nazionale Svizzero per la Ricerca Scientifica
    5. Fonds National Suisse
    6. Fondo Nazionale Svizzero
    7. Schweizerische Nationalfonds
    8. SNF
    9. SNSF
    10. FNS
    Awards1
    1. 20PA21L 129607

@article{Weise_2011, title={Realtime performance-based facial animation}, volume={30}, ISSN={1557-7368}, url={http://dx.doi.org/10.1145/2010324.1964972}, DOI={10.1145/2010324.1964972}, number={4}, journal={ACM Transactions on Graphics}, publisher={Association for Computing Machinery (ACM)}, author={Weise, Thibaut and Bouaziz, Sofien and Li, Hao and Pauly, Mark}, year={2011}, month=jul, pages={1–10} }