Abstract
This paper presents a composite multi-layer classifier system for predicting the subcellular localization of proteins based on their amino acid sequence. The work is an extension of our previous predictor PProwler v1.1 which is itself built upon the series of predictors SignalP and TargetP. In this study we outline experiments conducted to improve the classifier design. The major improvement came from using Support Vector machines as a "smart gate" sorting the outputs of several different targeting peptide detection networks. Our final model (PProwler v1.2) gives MCC values of 0.873 for non-plant and 0.849 for plant proteins. The model improves upon the accuracy of our previous subcellular localization predictor (PProwler v1.1) by 2% for plant data (which represents 7.5% improvement upon TargetP).
References
19
Referenced
55
10.1093/bioinformatics/16.5.412
10.1093/bioinformatics/15.11.937
{'key': 'rf4', 'volume': '16', 'author': 'Bodén M.', 'journal-title': 'IEEE Transactions on Neural Networks'}
/ IEEE Transactions on Neural Networks by Bodén M.10.1093/bioinformatics/bti372
10.1073/pnas.97.1.262
{'key': 'rf7', 'first-page': '195', 'volume': '7', 'author': 'Elman J. L.', 'journal-title': 'Machine Learning'}
/ Machine Learning by Elman J. L.10.1093/bib/3.4.361
10.1006/jmbi.2000.3903
{'key': 'rf10', 'volume': '2', 'author': 'Hawkins J.', 'journal-title': 'IEEE/ACM Transactions on Computational Biology and Bioinformatics'}
/ IEEE/ACM Transactions on Computational Biology and Bioinformatics by Hawkins J.10.1016/S0167-4889(01)00146-X
-
J. Platt, Advances in Large Margin Classifiers, eds. A. Smola (MIT Press, 2000) pp. 61–74.
(
10.7551/mitpress/1113.003.0008
) {'key': 'rf13', 'first-page': '227', 'volume': '7', 'author': 'Pollack J. B.', 'journal-title': 'Machine Learning'}
/ Machine Learning by Pollack J. B.10.1002/prot.10082
10.1002/pmic.200300769
10.1002/pmic.200300786
10.1109/TNN.2003.820839
{'key': 'rf18', 'volume-title': 'Statistical Learning Theory', 'author': 'Vapnik V.', 'year': '1998'}
/ Statistical Learning Theory by Vapnik V. (1998)10.1093/bioinformatics/btg463
{'key': 'rf20', 'volume-title': 'Data Mining: Practical Machine Learning Tools with Java Implementations', 'author': 'Witten I. H.', 'year': '2000'}
/ Data Mining: Practical Machine Learning Tools with Java Implementations by Witten I. H. (2000)
Dates
Type | When |
---|---|
Created | 19 years, 5 months ago (March 27, 2006, 7:43 p.m.) |
Deposited | 1 year, 7 months ago (Feb. 3, 2024, 8:37 a.m.) |
Indexed | 1 month, 1 week ago (July 25, 2025, 6:42 a.m.) |
Issued | 19 years, 7 months ago (Feb. 1, 2006) |
Published | 19 years, 7 months ago (Feb. 1, 2006) |
Published Online | 13 years, 9 months ago (Nov. 21, 2011) |
Published Print | 19 years, 7 months ago (Feb. 1, 2006) |
@article{HAWKINS_2006, title={DETECTING AND SORTING TARGETING PEPTIDES WITH NEURAL NETWORKS AND SUPPORT VECTOR MACHINES}, volume={04}, ISSN={1757-6334}, url={http://dx.doi.org/10.1142/s0219720006001771}, DOI={10.1142/s0219720006001771}, number={01}, journal={Journal of Bioinformatics and Computational Biology}, publisher={World Scientific Pub Co Pte Ltd}, author={HAWKINS, JOHN and BODÉN, MIKAEL}, year={2006}, month=feb, pages={1–18} }