Crossref journal-article
American Society for Microbiology
Microbiology and Molecular Biology Reviews (235)
Abstract

SUMMARYα-Crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse α-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called α-crystallin domain; and (iv) molecular chaperone activity. Since α-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, α-Hsps. α-Crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, α-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of α-Hsps with an emphasis on the microbial members of this chaperone family.

Bibliography

Narberhaus, F. (2002). α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network. Microbiology and Molecular Biology Reviews, 66(1), 64–93.

Authors 1
  1. Franz Narberhaus (first)
References 381 Referenced 456
  1. 10.1006/bbrc.2000.3518
  2. 10.1111/j.1365-2958.1994.tb00419.x
  3. 10.1046/j.1365-2958.1997.3661739.x
  4. Akiyama, Y., M. Ehrmann, A. Kihara, and K. Ito. 1998. Polypeptide binding of Escherichia coli FtsH (HflB). Mol. Microbiol.28:803-812. (10.1046/j.1365-2958.1998.00843.x) / Mol. Microbiol. (1998)
  5. 10.1016/S0021-9258(17)37677-9
  6. 10.1128/jb.174.21.6938-6947.1992
  7. 10.1038/24094
  8. 10.1074/jbc.271.50.31973
  9. 10.1126/science.181.4096.223
  10. Arrigo, A. P. 1998. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol. Chem.379:19-26. / Biol. Chem. (1998)
  11. Arrigo A. P. and J. Landry. 1994. Expression and function of the low-molecular-weight heat shock proteins p. 335-373. In R. I. Morimoto A. Tissières and C. Georgopoulos (ed.). The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
  12. 10.1046/j.1365-2958.1996.438968.x
  13. 10.1111/j.1574-6976.1995.tb00217.x
  14. 10.1074/jbc.M001089200
  15. 10.1128/jb.170.7.2977-2983.1988
  16. 10.1128/JB.183.23.6852-6861.2001
  17. 10.1074/jbc.274.16.11344
  18. Beissinger, M., and J. Buchner. 1998. How chaperones fold proteins. Biol. Chem.379:245-259. / Biol. Chem. (1998)
  19. 10.1016/S0966-842X(98)01281-5
  20. 10.1016/S0021-9258(17)32060-4
  21. 10.1128/jb.177.11.3344-3346.1995
  22. 10.1074/jbc.274.10.6305
  23. 10.1002/j.1460-2075.1995.tb00190.x
  24. 10.1126/science.277.5331.1453
  25. 10.1016/S0167-4838(99)00107-7
  26. 10.1016/S0167-4838(00)00243-0
  27. 10.1074/jbc.273.43.28085
  28. Reference deleted.
  29. 10.1128/iai.61.4.1509-1515.1993
  30. 10.1074/jbc.272.47.29511
  31. 10.1074/jbc.275.2.1035
  32. 10.1073/pnas.96.11.6137
  33. 10.1073/pnas.94.3.884
  34. 10.3109/10425179609010207
  35. Bruey, J. M., C. Ducasse, P. Bonniaud, L. Ravagnan, S. A. Susin, C. Diaz-Latoud, S. Gurbuxani, A. P. Arrigo, G. Kroemer, E. Solary, and C. Garrido. 2000. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol.2:645-652. / Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. (2000)
  36. 10.1016/S0968-0004(99)01373-0
  37. 10.1096/fasebj.10.1.8566529
  38. 10.1111/j.1365-2958.1993.tb01727.x
  39. 10.1016/S0092-8674(00)80806-5
  40. 10.1016/S0092-8674(00)80928-9
  41. 10.1126/science.273.5278.1058
  42. 10.1016/S0141-8130(98)00017-8
  43. 10.1007/BF00163229
  44. 10.1074/jbc.271.12.7218
  45. 10.1128/MCB.20.20.7602-7612.2000
  46. 10.1128/jb.175.16.5242-5252.1993
  47. 10.1093/emboj/17.24.7151
  48. 10.1016/S0959-440X(99)00048-2
  49. 10.1074/jbc.275.9.6664
  50. 10.1021/bi001453j
  51. 10.1038/31159
  52. 10.1038/35059006
  53. 10.1101/gad.14.12.1460
  54. 10.1128/JB.180.4.801-808.1998
  55. 10.1074/jbc.274.47.33209
  56. 10.1074/jbc.271.18.10449
  57. 10.1074/jbc.274.49.34773
  58. Davidson, J. F., B. Whyte, P. H. Bissinger, and R. H. Schiestl. 1996. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA14:5116-5121. / Proc. Natl. Acad. Sci. USA (1996)
  59. 10.1099/00221287-146-7-1513
  60. Deckert G. P. V. Warren T. Gaasterland W. G. Young A. L. Lenox et al. 1998. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus . Nature 392: 353-358. (10.1038/32831)
  61. 10.1016/S0141-8130(98)00013-0
  62. Delmas, F., F. Pierre, F. Coucheney, C. Divies, and J. Guzzo. 2001. Biochemical and phyiological studies of the small heat shock protein Lo18 from the lactic acid bacterium Oenocucoccus oeni.J. Mol. Microbiol. Biotechnol.3:601-610. / J. Mol. Microbiol. Biotechnol. (2001)
  63. 10.1016/S1350-9462(98)00030-5
  64. 10.1046/j.1432-1327.2001.01929.x
  65. 10.1046/j.1365-2958.1999.01152.x
  66. 10.1046/j.1365-2958.2000.02124.x
  67. 10.1038/23301
  68. 10.1074/jbc.M001293200
  69. 10.1016/S0014-5793(98)00669-3
  70. 10.1006/abbi.1999.1177
  71. 10.1073/pnas.100422497
  72. Ehrnsperger, M., J. Buchner, and M. Gaestel. 1998. Structure and function of small heat-shock proteins, p. 533-575. In A. L. Fink, and Y. Goto (ed.), Molecular chaperones in the life cycle of proteins: structure, function and mode of action. Marcel Dekker, Inc., New York, N.Y. / Molecular chaperones in the life cycle of proteins: structure (1998)
  73. 10.1093/emboj/16.2.221
  74. 10.1006/abio.1998.2630
  75. 10.1074/jbc.274.21.14867
  76. Ellis, J. 1987. Proteins as molecular chaperones. Nature328:378-379. / Nature (1987)
  77. Ellis, R. J. 1990. The molecular chaperone concept. Semin. Cell Biol.1:1-9. / Semin. Cell Biol. (1990)
  78. 10.1016/S0092-8674(00)80509-7
  79. 10.1016/S0141-8130(98)00015-4
  80. 10.1016/S0014-5793(00)02051-2
  81. 10.1128/jb.171.3.1379-1385.1989
  82. 10.1074/jbc.M010856200
  83. 10.1379/1466-1268(2000)005<0148:FCOXSH>2.0.CO;2
  84. 10.1002/j.1460-2075.1993.tb05952.x
  85. 10.1007/s002030050711
  86. 10.1038/346623a0
  87. 10.1126/science.7542800
  88. 10.1038/37551
  89. 10.1126/science.270.5235.397
  90. 10.1126/science.281.5375.375
  91. 10.1126/science.1060966
  92. 10.1111/j.1365-2958.1995.tb02347.x
  93. 10.1038/35037619
  94. 10.1016/S0092-8674(00)81223-4
  95. Goffeau, A., et al. 1997. The yeast genome directory. Nature387(Suppl.):1-107. / Nature (1997)
  96. 10.1073/pnas.96.24.13732
  97. González-Márquez, H., C. Perrin, P. Bracquart, C. Guimont, and G. Linden. 1997. A 16 kDa protein family overexpressed by Streptococcus thermophilus PB18 in acid environments. Microbiology5:1587-1594. / Microbiology (1997)
  98. 10.1146/annurev.genet.30.1.465
  99. 10.1101/gad.11.7.815
  100. 10.1016/S0968-0004(98)01255-9
  101. 10.1128/JB.181.2.434-443.1999
  102. 10.1074/jbc.273.20.12476
  103. 10.1111/j.1432-1033.1994.00001.x
  104. Gross, C. A. 1996. Function and regulation of the heat shock proteins, p. 1382-1399. In F. C. Neidhardt et al. (ed.), Escherichia coli and Salmonella: cellular and molecular biology, and ed. American Society for Microbiology, Washington, D.C. / Escherichia coli and Salmonella: cellular and molecular biology (1996)
  105. Gross, C. A., M. Lonetto, and R. Losick. 1992. Bacterial sigma factors, p. 129-176. In S. L. McKnight and K. R. Yamamoto (ed.), Transcriptional regulation, vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. / Transcriptional regulation (1992)
  106. 10.1128/MCB.17.7.4033
  107. 10.1128/jb.173.22.7374-7381.1991
  108. 10.1046/j.1472-765X.1997.00042.x
  109. 10.1006/jmbi.2000.3657
  110. 10.1006/jmbi.1997.1611
  111. 10.1379/1466-1268(1999)004<0129:TCSHSP>2.3.CO;2
  112. 10.1126/science.276.5311.431
  113. 10.1038/381571a0
  114. 10.1093/emboj/18.23.6744
  115. 10.1104/pp.116.1.439
  116. 10.1046/j.1365-2958.1996.396932.x
  117. 10.1128/jb.175.22.7479-7482.1993
  118. 10.1128/jb.175.3.905-908.1993
  119. 10.1038/35020000
  120. 10.1007/PL00000573
  121. 10.1104/pp.114.4.1477
  122. 10.1128/jb.179.6.1887-1897.1997
  123. 10.1016/S1369-5274(98)80012-X
  124. 10.1073/pnas.92.8.3516
  125. 10.1093/emboj/17.16.4818
  126. 10.1093/nar/24.22.4420
  127. 10.1073/pnas.95.7.3513
  128. 10.1073/pnas.96.20.11033
  129. 10.1073/pnas.89.21.10449
  130. 10.1016/S0141-8130(98)00024-5
  131. 10.1038/eye.1999.114
  132. 10.1038/45977
  133. Hunt, J. F., A. J. Weaver, S. J. Landry, L. Gierasch, and J. Deisenhofer. 1996. The crystal structure of the GroES co-chaperonin at 2.8 angstrom resolution. Nature379:37-45. / The crystal structure of the GroES co-chaperonin at 2.8 angstrom resolution. Nature (1996)
  134. 10.1073/pnas.84.16.5550
  135. 10.1073/pnas.79.7.2360
  136. 10.1128/jb.175.9.2483-2489.1993
  137. 10.1073/pnas.081543698
  138. 10.1074/jbc.M009004200
  139. 10.1016/0968-0004(94)90023-X
  140. 10.1016/S0021-9258(18)53882-5
  141. 10.1074/jbc.270.13.7288
  142. 10.1016/S0092-8674(00)80547-4
  143. 10.1104/pp.108.2.693
  144. 10.1128/aem.63.2.609-614.1997
  145. 10.1093/dnares/7.6.331
  146. 10.1093/dnares/3.3.109
  147. 10.1016/S0167-4781(01)00237-8
  148. 10.1016/S0021-9258(19)78121-6
  149. 10.1016/S0021-9258(18)42574-4
  150. 10.1093/dnares/6.2.83
  151. 10.1093/dnares/5.2.55
  152. 10.1083/jcb.147.7.1431
  153. 10.1126/science.271.5251.990
  154. 10.1094/MPMI.1999.12.7.563
  155. 10.1006/jmbi.1995.0400
  156. 10.1006/jmbi.2000.4165
  157. 10.1006/jmbi.1999.3320
  158. 10.1038/29106
  159. 10.1073/pnas.95.16.9129
  160. 10.1038/87639
  161. 10.1046/j.1365-313x.2000.00887.x
  162. 10.1111/j.1574-6968.2000.tb09009.x
  163. 10.1038/37052
  164. 10.1016/S0014-5793(98)00917-X
  165. 10.1093/emboj/19.4.741
  166. 10.1006/jmbi.1999.3242
  167. 10.1128/JB.180.24.6681-6688.1998
  168. 10.1093/emboj/20.4.852
  169. 10.1006/bbrc.2001.4926
  170. 10.1016/S0014-5793(97)01180-0
  171. 10.1074/jbc.274.34.24137
  172. 10.1038/36786
  173. 10.1074/jbc.274.14.9378
  174. 10.1083/jcb.109.1.7
  175. 10.1016/0300-9084(96)82643-5
  176. 10.1016/S0021-9258(18)53711-X
  177. 10.1128/MCB.15.1.505
  178. 10.1128/iai.60.5.2066-2074.1992
  179. 10.1074/jbc.270.18.10432
  180. 10.1093/emboj/16.3.659
  181. 10.1104/pp.122.1.189
  182. Lee, S., H. A. Owen, D. J. Prochaska, and S. R. Barnum. 2000. HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Curr. Microbiol.40:283-287. / PCC 6803. Curr. Microbiol. (2000)
  183. 10.1007/s002849900400
  184. 10.1016/S1369-5274(99)80023-X
  185. 10.1038/18704
  186. 10.1074/jbc.272.19.12847
  187. 10.1074/jbc.272.39.24646
  188. 10.1128/jb.174.12.3981-3992.1992
  189. 10.1242/jcs.110.13.1431
  190. 10.1074/jbc.271.47.30158
  191. 10.1046/j.1432-1327.2000.01188.x
  192. 10.1074/jbc.272.44.27722
  193. 10.1046/j.1432-1327.1998.2580170.x
  194. 10.1146/annurev.ge.22.120188.003215
  195. 10.1006/bbrc.1999.0174
  196. 10.1128/jb.177.24.7092-7099.1995
  197. 10.1074/jbc.M103373200
  198. 10.2741/Macario
  199. 10.1128/MMBR.63.4.923-967.1999
  200. 10.1007/PL00000733
  201. 10.1128/JB.181.24.7629-7633.1999
  202. 10.1007/s004380050409
  203. Mayer, M. P., S. Rüdiger, and B. Bukau. 2000. Molecular basis for interactions of the DnaK chaperone with substrates. Biol. Chem.381:877-885. / Biol. Chem. (2000)
  204. 10.1002/(SICI)1097-4652(199705)171:2<143::AID-JCP4>3.0.CO;2-O
  205. 10.1111/j.1432-1033.1993.tb18032.x
  206. 10.1002/j.1460-2075.1996.tb00630.x
  207. 10.1074/jbc.272.50.31657
  208. 10.1074/jbc.271.28.16510
  209. 10.1016/S0021-9258(18)54039-4
  210. 10.1007/PL00000572
  211. 10.1128/JB.181.14.4237-4244.1999
  212. 10.1128/aem.60.4.1206-1212.1994
  213. 10.1007/s004380050408
  214. 10.1083/jcb.114.2.255
  215. 10.1046/j.1365-2958.1998.00865.x
  216. 10.1002/j.1460-2075.1996.tb01082.x
  217. 10.1093/emboj/16.15.4579
  218. 10.1093/emboj/18.24.6934
  219. 10.1101/gad.12.24.3788
  220. Morimoto, R. I., A. Tissières, and C. Georgopoulos. 1994. Progress and perspectives on the biology of heat shock proteins and molecular chaperones, p. 1-30. In R. I. Morimoto, A. Tissières, and C. Georgopoulos (ed.), The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. / The biology of heat shock proteins and molecular chaperones (1994)
  221. 10.1073/pnas.96.13.7184
  222. 10.1074/jbc.272.4.2578
  223. 10.1073/pnas.95.3.1004
  224. 10.1074/jbc.274.42.30190
  225. 10.1006/jmbi.1999.2759
  226. 10.1046/j.1432-1327.1999.00567.x
  227. 10.1128/JB.181.1.83-90.1999
  228. 10.1016/S0014-5793(00)02097-4
  229. 10.1046/j.1365-2958.1999.01166.x
  230. 10.1046/j.1365-2958.1998.00794.x
  231. 10.1128/jb.178.18.5337-5346.1996
  232. 10.1007/s002030050547
  233. 10.1094/MPMI.2000.13.9.995
  234. 10.1038/20601
  235. 10.1128/jb.170.12.5919-5921.1988
  236. 10.1016/S0968-0004(97)01171-7
  237. 10.1073/pnas.190337797
  238. Reference deleted.
  239. 10.1002/j.1460-2075.1994.tb06339.x
  240. 10.1073/pnas.061029298
  241. Nocker A. T. Hausherr S. Balsiger N. P. Krstulovic H. Hennecke and F. Narberhaus. 2001. A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res. 29: 4800-4807. (10.1093/nar/29.23.4800)
  242. 10.1007/s002030100294
  243. 10.1128/JB.183.16.4823-4838.2001
  244. 10.1007/PL00000583
  245. 10.1128/mcb.9.3.1298-1308.1989
  246. 10.1101/gad.9.6.714
  247. 10.1099/13500872-145-1-127
  248. 10.1128/jb.169.1.283-290.1987
  249. 10.1093/emboj/17.16.4829
  250. 10.1038/35001088
  251. 10.1006/jmbi.1996.0395
  252. 10.1074/jbc.274.47.33235
  253. 10.1007/BF00604941
  254. 10.1016/0378-1119(94)90375-1
  255. 10.1074/jbc.271.45.28558
  256. 10.1073/pnas.92.11.5032
  257. 10.1006/bbrc.1998.9242
  258. 10.1074/jbc.272.38.23559
  259. Ranson, N. A., H. E. White, and H. R. Saibil. 1998. Chaperonins. Biochem. J.2:233-242. / Chaperonins. Biochem. J. (1998)
  260. 10.1093/nar/28.6.1397
  261. 10.1074/jbc.275.7.4565
  262. 10.1073/pnas.071043698
  263. Reischl, S., S. Thake, G. Homuth, and W. Schumann. 2001. Transcriptional analysis of three Bacillus subtilis genes coding for proteins with the α-crystallin domain characteristic of small heat shock proteins. FEMS Microbiol. Lett.194:99-103. / FEMS Microbiol. Lett. (2001)
  264. 10.1126/science.274.5284.103
  265. 10.1016/S0968-0004(98)01193-1
  266. 10.1093/nar/27.19.3821
  267. 10.1074/jbc.274.27.18947
  268. 10.1073/pnas.93.12.5808
  269. 10.1016/S0006-291X(05)80963-5
  270. 10.1046/j.1432-1327.1999.00380.x
  271. 10.1128/JB.180.15.3997-4001.1998
  272. 10.1038/35035069
  273. 10.1104/pp.117.2.651
  274. 10.1104/pp.110.2.531
  275. 10.1074/jbc.M107737200
  276. 10.1128/jb.175.11.3394-3400.1993
  277. 10.1128/MCB.18.4.2240
  278. 10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2
  279. 10.1016/S0968-0004(96)10038-4
  280. Schirmer, E. C., S. Lindquist, and E. Vierling. 1994. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell6:1899-1909. / Plant Cell (1994)
  281. 10.1111/j.1365-2958.1995.tb02256.x
  282. 10.1016/S0168-6445(98)00024-2
  283. 10.1073/pnas.91.6.2066
  284. 10.1073/pnas.97.7.3538
  285. 10.1128/jb.177.11.2998-3003.1995
  286. 10.1128/jb.178.24.7031-7036.1996
  287. Servant, P., G. Rapoport, and P. Mazodier. 1999. RheA, the repressor of hsp18 in Streptomyces albus G. Microbiology9:2385-2391. / RheA, the repressor of hsp18 in Streptomyces albus G. Microbiology (1999)
  288. 10.1006/bbrc.1997.7460
  289. 10.1074/jbc.273.15.8965
  290. 10.1074/jbc.273.25.15474
  291. 10.1074/jbc.275.6.3767
  292. 10.1074/jbc.274.15.9937
  293. 10.1073/pnas.121172498
  294. 10.1007/978-3-642-58259-2_10
  295. 10.1038/35024074
  296. 10.1128/jb.178.4.1141-1145.1996
  297. 10.1046/j.1365-2958.1997.4231796.x
  298. 10.1021/bi991656b
  299. 10.1038/35018003
  300. 10.1016/S0141-8130(98)00029-4
  301. 10.1073/pnas.97.16.8898
  302. 10.1128/JB.179.22.7135-7155.1997
  303. 10.1016/S0014-5793(97)00498-5
  304. 10.1074/jbc.271.46.29060
  305. 10.1016/S0141-8130(98)00016-6
  306. 10.1046/j.1432-1327.2000.01223.x
  307. 10.1046/j.1365-313x.2000.00837.x
  308. 10.1007/s002840010114
  309. 10.1006/plas.1998.1352
  310. 10.1046/j.1365-2958.1999.01273.x
  311. 10.1104/pp.120.2.521
  312. 10.1016/S0021-9258(18)83755-3
  313. 10.1016/S0092-8674(00)80743-6
  314. 10.1128/jb.174.4.1081-1085.1992
  315. Srinivas, V., S. A. Datta, T. Ramakrishna, and C. M. Rao. 2001. Studies on the α-crystallin target protein sites: sequential binding with two target proteins. Mol. Vis.7:114-119. / Mol. Vis. (2001)
  316. 10.1073/pnas.96.12.6787
  317. 10.1006/bbrc.1999.1167
  318. 10.1038/35023079
  319. Reference deleted.
  320. 10.1074/jbc.M004701200
  321. 10.1074/jbc.272.10.6220
  322. 10.1074/jbc.273.1.286
  323. 10.1016/S0968-0004(97)01020-7
  324. 10.1104/pp.116.3.1151
  325. 10.1093/nar/28.21.4317
  326. 10.1016/S0092-8674(00)80787-4
  327. 10.1126/science.287.5459.1809
  328. 10.1046/j.1365-2958.2000.01951.x
  329. 10.1128/JB.180.19.5165-5172.1998
  330. 10.1046/j.1365-2958.1998.00698.x
  331. 10.1046/j.1365-2958.1999.01551.x
  332. 10.1093/nar/22.22.4673
  333. 10.1126/science.1962196
  334. 10.1038/41483
  335. 10.1073/pnas.051619498
  336. 10.1073/pnas.94.6.2192
  337. 10.1128/jb.176.19.6148-6152.1994
  338. Reference deleted.
  339. 10.1074/jbc.270.16.9322
  340. van Bogelen, R. A., K. Z. Abshire, A. Pertsemlidis, R. L. Clark, and F. C. Neidhardt. 1996. Gene-protein database of Escherichia coli K-12, edition 6, p. 2067-2117.In F. C. Neidhardt et al. (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. American Society for Microbiology, Washington, D.C. / Escherichia coli and Salmonella: cellular and molecular biology (1996)
  341. 10.1046/j.1432-1327.1998.2581014.x
  342. 10.1016/0014-5793(94)01175-3
  343. van den Oetelaar, P. J., P. F. van Someren, J. A. Thomson, R. J. Siezen, and H. J. Hoenders. 1990. A dynamic quaternary structure of bovine α-crystallin as indicated from intermolecular exchange of subunits. Biochemistry10:3488-3493. / Biochemistry (1990)
  344. 10.1128/jb.179.15.4768-4777.1997
  345. 10.1021/bi990386u
  346. 10.1046/j.1432-1327.2000.01423.x
  347. 10.1073/pnas.96.11.6064
  348. 10.1074/jbc.271.44.27730
  349. 10.1038/nsb722
  350. 10.1046/j.1365-2443.1997.1020301.x
  351. 10.1016/S0968-0004(97)01122-5
  352. 10.1074/jbc.273.18.11032
  353. 10.1128/jb.174.4.1352-1359.1992
  354. 10.1073/pnas.90.19.9090
  355. 10.1016/S0968-0004(98)01279-1
  356. 10.1016/S0969-2126(01)00597-4
  357. 10.1099/13500872-140-1-113
  358. 10.1046/j.1432-1327.2000.01521.x
  359. 10.1074/jbc.275.17.12388
  360. 10.1093/genetics/141.2.785
  361. 10.1093/jxb/47.3.325
  362. 10.1073/pnas.96.25.14394
  363. 10.1046/j.1365-2958.1996.421404.x
  364. Wawrzynow, A., D. Wojtkowiak, J. Marszalek, B. Banecki, M. Jonsen, B. Graves, C. Georgopoulos, and M. Zylicz. 1995. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. EMBO J.14:1876-1877. / EMBO J. (1995)
  365. 10.1038/43481
  366. 10.1104/pp.122.4.1099
  367. 10.1126/science.286.5444.1571
  368. 10.1073/pnas.91.25.12218
  369. 10.1126/science.286.5446.1888
  370. 10.1016/S0168-6445(98)00011-4
  371. 10.1074/jbc.271.5.2717
  372. 10.1038/41944
  373. 10.1046/j.1365-2958.1998.00683.x
  374. 10.1073/pnas.94.20.10967
  375. 10.1073/pnas.85.12.4267
  376. 10.1128/jb.178.15.4484-4492.1996
  377. 10.1073/pnas.95.16.9578
  378. Yura, T., M. Kanemori, and M. T. Morita. 2000. The heat shock response: regulation and function, p. 3-18. In G. Storz and R. Hengge-Aronis (ed.), Bacterial stress responses. ASM Press, Washington, D.C. / Bacterial stress responses (2000)
  379. Zantema, A., M. Verlaan-De Vries, D. Maasdam, S. Bol, and A. van der Eb. 1992. Heat shock protein 27 and αB-crystallin can form a complex, which dissociates by heat shock J. Biol. Chem.267:12936-12941. / Heat shock protein 27 and αB-crystallin can form a complex, which dissociates by heat shock J. Biol. Chem. (1992)
  380. 10.1126/science.272.5268.1606
  381. 10.1110/ps.8.9.1899
Dates
Type When
Created 22 years, 7 months ago (Jan. 2, 2003, 4:21 p.m.)
Deposited 1 year, 7 months ago (Jan. 8, 2024, 1:19 p.m.)
Indexed 1 week, 3 days ago (Aug. 21, 2025, 1:40 p.m.)
Issued 23 years, 6 months ago (March 1, 2002)
Published 23 years, 6 months ago (March 1, 2002)
Published Print 23 years, 6 months ago (March 1, 2002)
Funders 0

None

@article{Narberhaus_2002, title={α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network}, volume={66}, ISSN={1098-5557}, url={http://dx.doi.org/10.1128/mmbr.66.1.64-93.2002}, DOI={10.1128/mmbr.66.1.64-93.2002}, number={1}, journal={Microbiology and Molecular Biology Reviews}, publisher={American Society for Microbiology}, author={Narberhaus, Franz}, year={2002}, month=mar, pages={64–93} }