Crossref journal-article
American Society for Microbiology
Microbiology and Molecular Biology Reviews (235)
Abstract

SUMMARY Unicellular eukaryotic organisms must be capable of rapid adaptation to changing environments. While such changes do not normally occur in the tissues of multicellular organisms, developmental and pathological changes in the environment of cells often require adaptation mechanisms not dissimilar from those found in simpler cells. Autophagy is a catabolic membrane-trafficking phenomenon that occurs in response to dramatic changes in the nutrients available to yeast cells, for example during starvation or after challenge with rapamycin, a macrolide antibiotic whose effects mimic starvation. Autophagy also occurs in animal cells that are serum starved or challenged with specific hormonal stimuli. In macroautophagy, the form of autophagy commonly observed, cytoplasmic material is sequestered in double-membrane vesicles called autophagosomes and is then delivered to a lytic compartment such as the yeast vacuole or mammalian lysosome. In this fashion, autophagy allows the degradation and recycling of a wide spectrum of biological macromolecules. While autophagy is induced only under specific conditions, salient mechanistic aspects of autophagy are functional in a constitutive fashion. In Saccharomyces cerevisiae, induction of autophagy subverts a constitutive membrane-trafficking mechanism called the cytoplasm-to-vacuole targeting pathway from a specific mode, in which it carries the resident vacuolar hydrolase, aminopeptidase I, to a nonspecific bulk mode in which significant amounts of cytoplasmic material are also sequestered and recycled in the vacuole. The general aim of this review is to focus on insights gained into the mechanism of autophagy in yeast and also to review our understanding of the physiological significance of autophagy in both yeast and higher organisms.

Bibliography

Abeliovich, H., & Klionsky, D. J. (2001). Autophagy in Yeast: Mechanistic Insights and Physiological Function. Microbiology and Molecular Biology Reviews, 65(3), 463–479.

Authors 2
  1. Hagai Abeliovich (first)
  2. Daniel J. Klionsky (additional)
References 129 Referenced 149
  1. 10.1093/emboj/18.21.6005
  2. 10.1083/jcb.151.5.1025
  3. 10.1074/jbc.273.19.11719
  4. Anglade P. Vyas S. Javoy-Agid F. Herrero M. T. Michel P. P. Marquez J. Mouatt-Progent A. Ruberg M. Hirsch E. C. Agid Y. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease.Histol. Histopathol.1219972531 / Histol. Histopathol. / Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease by Anglade P. (1997)
  5. 10.1083/jcb.12.1.198
  6. 10.1083/jcb.133.6.1251
  7. 10.1083/jcb.139.7.1687
  8. 10.1083/jcb.124.6.903
  9. 10.1091/mbc.7.1.25
  10. 10.1091/mbc.7.4.579
  11. 10.1038/45287
  12. 10.1016/S1097-2765(00)80125-2
  13. 10.1091/mbc.8.6.1089
  14. 10.1111/j.1749-6632.2000.tb05594.x
  15. 10.1093/carcin/17.8.1595
  16. 10.1242/jcs.111.16.2455
  17. 10.1101/gad.13.24.3271
  18. 10.1126/science.282.5389.699
  19. 10.1083/jcb.3.3.349
  20. 10.1074/jbc.272.20.13437
  21. 10.1083/jcb.138.3.517
  22. 10.1083/jcb.35.2.C11
  23. 10.1083/jcb.33.2.437
  24. 10.1101/gad.10.15.1904
  25. 10.1016/0962-8924(94)90069-8
  26. 10.1083/jcb.110.6.1923
  27. 10.1083/jcb.110.6.1935
  28. 10.1091/mbc.10.6.1719
  29. 10.1016/S0378-1119(97)00031-0
  30. 10.1091/mbc.11.3.969
  31. 10.1016/S0014-5793(98)00266-X
  32. 10.1074/jbc.271.30.17621
  33. 10.1083/jcb.131.3.591
  34. 10.1073/pnas.96.26.14866
  35. 10.1126/science.1715094
  36. 10.1128/mcb.10.12.6742-6754.1990
  37. 10.1093/emboj/17.1.113
  38. 10.1091/mbc.10.9.2879
  39. 10.1074/jbc.275.8.5845
  40. 10.1074/jbc.M101150200
  41. 10.1242/jcs.112.22.4079
  42. 10.1038/35044114
  43. 10.1046/j.1365-2141.1997.2623081.x
  44. 10.1093/emboj/18.10.2782
  45. 10.1093/emboj/19.21.5720
  46. 10.1083/jcb.150.6.1507
  47. 10.1523/JNEUROSCI.20-19-07268.2000
  48. 10.1002/(SICI)1097-0061(19990630)15:9<741::AID-YEA416>3.0.CO;2-O
  49. 10.1083/jcb.152.3.519
  50. 10.1091/mbc.10.5.1337
  51. 10.1083/jcb.152.1.51
  52. 10.1083/jcb.153.2.381
  53. 10.1146/annurev.biochem.69.1.303
  54. 10.1083/jcb.137.3.609
  55. 10.1083/jcb.147.2.435
  56. 10.1083/jcb.151.2.263
  57. 10.1083/jcb.119.2.287
  58. 10.1128/mr.54.3.266-292.1990
  59. 10.1146/annurev.cellbio.15.1.1
  60. 10.1007/s004410000275
  61. 10.1016/0092-8674(86)90791-9
  62. 10.1074/jbc.M000917200
  63. 10.1128/MMBR.64.4.746-785.2000
  64. 10.1038/45257
  65. 10.1139/o94-078
  66. 10.1016/S0378-1119(97)00084-X
  67. 10.1038/35025000
  68. 10.1083/jcb.125.2.269
  69. 10.1093/emboj/18.14.3888
  70. 10.1038/26506
  71. 10.1074/jbc.273.51.33889
  72. 10.1104/pp.111.4.1233
  73. 10.1083/jcb.151.3.519
  74. 10.1083/jcb.127.2.373
  75. 10.1083/jcb.140.1.29
  76. 10.1016/S0171-9335(98)80084-8
  77. 10.1038/35022604
  78. 10.1083/jcb.148.3.465
  79. 10.1006/bbrc.1995.1636
  80. 10.1074/jbc.273.7.3963
  81. 10.1126/science.1096303
  82. 10.1016/S0960-9822(99)80071-2
  83. 10.1074/jbc.275.2.992
  84. 10.1146/annurev.cellbio.12.1.441
  85. 10.1091/mbc.10.4.987
  86. 10.1016/S0092-8674(94)90462-6
  87. 10.1016/S0960-9822(00)00051-8
  88. 10.1126/science.272.5259.227
  89. 10.1093/emboj/19.7.1494
  90. 10.1083/jcb.141.3.625
  91. 10.1128/MCB.18.9.5308
  92. 10.1016/S1097-2765(00)00064-2
  93. 10.1083/jcb.151.3.529
  94. 10.1093/emboj/17.23.6924
  95. 10.1126/science.8385367
  96. 10.1177/019262339702500117
  97. 10.1073/pnas.90.3.980
  98. 10.1083/jcb.138.1.37
  99. 10.1016/S1097-2765(01)00263-5
  100. 10.1073/pnas.93.22.12304
  101. 10.1074/jbc.M002813200
  102. 10.1073/pnas.97.17.9402
  103. 10.1091/mbc.9.10.2873
  104. 10.1007/s002940050489
  105. 10.1139/g89-018
  106. 10.1038/28879
  107. 10.1083/jcb.129.2.321
  108. 10.1002/j.1460-2075.1993.tb05867.x
  109. 10.1146/annurev.cb.11.110195.000245
  110. 10.1042/bj3350217
  111. 10.1083/jcb.119.2.301
  112. 10.1038/35022595
  113. 10.1091/mbc.10.5.1367
  114. 10.1074/jbc.C000752200
  115. 10.1074/jbc.C000739200
  116. 10.1016/0014-5793(94)00672-5
  117. 10.1016/0014-5793(93)80398-E
  118. 10.1242/jcs.108.1.25
  119. 10.1038/35001009
  120. 10.1146/annurev.biochem.68.1.1015
  121. Wang C.-W. J. Kim W.-P. Huang H. Abeliovich P. E. Stromhaug W. A. Dunn Jr. and D. J. Klionsky. Apg2 is a novel protein required for the cytoplasm to vacuole targeting autophagy and pexophagy pathways. J. Biol. Chem. in press.
  122. 10.1083/jcb.140.5.1063
  123. 10.1091/mbc.7.9.1375
  124. 10.1073/pnas.94.7.3046
  125. 10.1006/mcne.1999.0780
  126. 10.1016/S0960-9822(01)00100-2
  127. 10.1091/mbc.10.5.1353
  128. Zakeri Z. Bursch W. Tenniswood M. Lockshin R. A. Cell death. Programmed, apoptosis, necrosis, or other.Cell Death Differ.219958796 / Cell Death Differ. / Cell death. Programmed, apoptosis, necrosis, or other by Zakeri Z. (1995)
  129. 10.1128/MCB.18.8.4463
Dates
Type When
Created 22 years, 8 months ago (Jan. 2, 2003, 4:24 p.m.)
Deposited 3 years, 5 months ago (March 7, 2022, 10:04 p.m.)
Indexed 1 month, 4 weeks ago (July 6, 2025, 5:01 a.m.)
Issued 24 years ago (Sept. 1, 2001)
Published 24 years ago (Sept. 1, 2001)
Published Print 24 years ago (Sept. 1, 2001)
Funders 0

None

@article{Abeliovich_2001, title={Autophagy in Yeast: Mechanistic Insights and Physiological Function}, volume={65}, ISSN={1098-5557}, url={http://dx.doi.org/10.1128/mmbr.65.3.463-479.2001}, DOI={10.1128/mmbr.65.3.463-479.2001}, number={3}, journal={Microbiology and Molecular Biology Reviews}, publisher={American Society for Microbiology}, author={Abeliovich, Hagai and Klionsky, Daniel J.}, year={2001}, month=sep, pages={463–479} }