Abstract
SUMMARYA survey of the already characterized and potential two-component protein sequences that exist in the nine complete and seven partially annotated cyanobacterial genome sequences available (as of May 2005) showed that the cyanobacteria possess a much larger repertoire of such proteins than most other bacteria. By analysis of the domain structure of the 1,171 potential histidine kinases, response regulators, and hybrid kinases, many various arrangements of about thirty different modules could be distinguished. The number of two-component proteins is related in part to genome size but also to the variety of physiological properties and ecophysiologies of the different strains. Groups of orthologues were defined, only a few of which have representatives with known physiological functions. Based on comparisons with the proposed phylogenetic relationships between the strains, the orthology groups show that (i) a few genes, some of them clustered on the genome, have been conserved by all species, suggesting their very ancient origin and an essential role for the corresponding proteins, and (ii) duplications, fusions, gene losses, insertions, and deletions, as well as domain shuffling, occurred during evolution, leading to the extant repertoire. These mechanisms are put in perspective with the different genetic properties that cyanobacteria have to achieve genome plasticity. This review is designed to serve as a basis for orienting further research aimed at defining the most ancient regulatory mechanisms and understanding how evolution worked to select and keep the most appropriate systems for cyanobacteria to develop in the quite different environments that they have successfully colonized.
References
156
Referenced
121
10.1111/j.1365-2958.1993.tb01205.x
10.1093/nar/25.17.3389
10.1046/j.1365-2958.2003.03344.x
10.1016/S0968-0004(00)01672-8
10.1006/jmbi.2001.4508
10.1128/JB.185.1.89-97.2003
10.1128/JB.185.16.4872-4882.2003
10.1016/S0968-0004(98)01293-6
10.1016/S0968-0004(97)01148-1
10.1111/j.1574-6968.1999.tb13650.x
10.1016/S0378-1097(04)00004-7
10.1111/j.1574-6968.1999.tb08852.x
- Ashby, M. K., J. Houmard, and C. W. Mullineaux. 2002 . The ycf27 genes from cyanobacteria and eukaryotic algae: distribution and implications for chloroplast evolution. FEMS Microbiol. Lett.214:25-30. / FEMS Microbiol. Lett. (2002)
10.1021/bi960919o
10.1128/JB.187.14.4921-4927.2005
10.1074/jbc.M413928200
10.1046/j.1365-2958.1996.433963.x
10.1093/nar/gkh121
10.1111/j.1365-2958.2004.04160.x
10.1073/pnas.131201098
10.1073/pnas.100118697
10.1016/S0092-8674(00)80966-6
10.1073/pnas.0409917102
10.1074/jbc.M503153200
10.1128/jb.173.18.5771-5777.1991
- Cann, M. J. 2004. Signalling through cyclic nucleotide monophosphates in cyanobacteria. New Phytol.159:289-293. / New Phytol. (2004)
10.1016/S0021-9258(18)53093-3
- Castenholz, R. W. (2001) The archaea and the deeply branching and phototropic bacteria, p. 473-599. In G. Garrity, D. R. Boone, and R. W. Castenholz (ed.), Bergey's manual of systematic bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y. / Bergey's manual of systematic bacteriology (2001)
10.1007/s00239-004-2663-2
10.1073/pnas.89.20.9415
10.1101/gr.3033805
10.1146/annurev.genet.37.110801.142716
-
Dufresne, A., L. Garczarek, and F. Partensky. 2005. Accelerated evolution associated with genome reduction in a free-living prokaryote.Genome Biol.6:R14. [Online.] http://genomebiology.com/2005/6/2/R14 .
(
10.1186/gb-2005-6-2-r14
) / Genome Biol. (2005) 10.1073/pnas.1733211100
10.1021/bi0484365
10.1073/pnas.0407645101
10.1099/00221287-146-7-1573
10.1128/AEM.69.5.2430-2443.2003
10.1186/1471-2180-5-35
10.1111/j.1574-6968.2001.tb10919.x
10.1111/j.1574-6968.2001.tb10814.x
- Galtier, N., M. Gouy, and C. Gautier. 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci.12:543-548. / Comput. Appl. Biosci. (1996)
10.1046/j.1365-2958.2000.01789.x
10.1152/japplphysiol.00941.2003
10.1128/jb.171.1.24-29.1989
10.1007/BF02671562
- Heermann, R., K. Altendorf, and K. Jung. 2003. The N-terminal input domain of the sensor kinase KdpD of Escherichia coli stabilises the interaction between the cognate response regulator KdpE and the corresponding DNA-binding site. J. Biol. Chem.51:51277-51284. / J. Biol. Chem. (2003)
10.1101/gr.183801
10.1016/j.tim.2005.02.001
10.1007/s002390010082
10.1016/j.copbio.2004.03.007
10.1023/A:1006425214168
10.1074/jbc.M411284200
10.1093/emboj/19.20.5288
10.1016/S1369-5274(00)00070-9
10.1007/PL00006517
10.1128/JB.186.12.3882-3888.2004
10.1016/S0092-8674(00)80832-6
10.1186/1471-2164-4-5
10.1128/JB.182.23.6673-6678.2000
10.1186/1471-2148-4-22
10.1074/jbc.M208899200
10.1099/mic.0.28510-0
10.1093/dnares/8.5.205
10.1128/JB.186.2.267-269.2004
10.1074/jbc.274.21.15167
10.1093/oxfordjournals.pcp.a029241
10.1128/jb.179.11.3588-3593.1997
10.1128/jb.179.12.3914-3921.1997
10.1093/oxfordjournals.molbev.a026297
10.1146/annurev.arplant.49.1.151
10.1128/JB.182.15.4268-4277.2000
10.1111/j.1365-2958.2005.04491.x
10.1073/pnas.89.12.5655
10.1073/pnas.0401526101
10.1023/A:1015262621848
10.1046/j.1365-2958.2002.02741.x
10.1046/j.1365-2958.2003.03768.x
-
Luque, I., G. Zabulon, A. Contreras, and J. Houmard. 2001. Convergence of two global transcriptional regulators on nitrogen induction of the stress-acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Mol. Microbiol.41:937-947.
(
10.1046/j.1365-2958.2001.02566.x
) / Mol. Microbiol. (2001) 10.1038/424741a
10.1073/pnas.1532302100
10.1016/S0969-2126(97)00170-6
10.1016/S0378-1097(03)00587-1
10.1016/0167-4781(96)00040-1
10.1128/jb.172.5.2755-2761.1990
10.1074/jbc.270.51.30671
10.1101/gad.353705
10.1046/j.1365-2958.2002.03202.x
10.1073/pnas.0401478101
10.1093/dnares/3.6.407
10.1186/1471-2180-5-47
10.1111/j.1574-6968.2006.00136.x
10.1074/jbc.M213255200
10.1093/dnares/9.4.123
10.1093/dnares/10.4.137
10.1093/dnares/11.2.69
10.1159/000068720
10.1099/mic.0.26747-0
10.1099/00221287-146-12-3183
- Ochoa de Alda, J. A. G., A. del Pico, A. Pedraza, and J. Houmard. 2005. Caracterización, clasificación y filogenia de adenilil y guanilil ciclasas de cianobacterias. Oppidum1:311-356. / Oppidum (2005)
10.1074/jbc.M204175200
10.1039/b401623h
10.1093/dnares/8.6.271
10.1093/dnares/6.5.265
10.1562/0031-8655(2004)080<0429:APPATT>2.0.CO;2
10.1074/jbc.M410162200
10.1038/nature01943
10.1101/gad.289504
10.1002/1097-0134(20010201)42:2<210::AID-PROT80>3.0.CO;2-8
10.1042/bj3600639
10.1016/S0960-9822(06)00352-6
10.1016/S0022-2836(02)01031-8
10.1074/jbc.M408855200
10.1146/annurev.ge.25.120191.002133
10.1073/pnas.0304489101
10.1128/JB.183.10.2989-2994.2001
- Rippka, R., R. W. Castenholz, and M. Herdman. 2001. The archaea and the deeply branching and phototropic bacteria, p.562 -566. In G. Garrity, D. R. Boone, and R. W. Castenholz (ed.),Bergey's manual of systematic bacteriology , 2nd ed.,vol. 1 . Springer-Verlag, New York, N.Y. / Bergey's manual of systematic bacteriology (2001)
10.1093/nar/23.5.729
10.1038/nature01947
10.1016/S0923-2508(02)01316-5
10.1128/JB.187.5.1792-1798.2005
10.1016/S0065-2911(03)47001-X
10.1128/JB.187.14.4774-4781.2005
10.1126/science.289.5480.765
10.1128/JB.180.23.6332-6337.1998
10.1073/pnas.95.18.11008
10.1074/jbc.M412174200
10.1128/JB.187.7.2368-2376.2005
10.1016/S0168-9525(02)02793-2
10.1021/bi972330a
- Steegborn, C., T. N. Litvin, L. R. Levin, J. Buck, and H. Wu. 2004. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment.Nat. Struct. Mol. Biol.12:32-37. / Nat. Struct. Mol. Biol. (2004)
10.1042/bst0310001
10.1146/annurev.biochem.69.1.183
10.1038/nature01929
10.1104/pp.104.059097
10.1093/emboj/19.6.1327
10.1074/jbc.M313358200
10.1046/j.1365-2958.2003.03853.x
10.1093/nar/22.22.4673
10.1093/nar/30.1.318
10.1128/JB.186.12.3889-3902.2004
10.1016/j.tim.2004.12.006
10.1128/JB.184.9.2481-2490.2002
10.1093/nar/25.17.3471
10.1128/jb.174.7.2152-2159.1992
10.1016/S0960-9822(02)01396-9
10.1016/S0966-842X(03)00073-8
10.1074/jbc.M405120200
10.1105/tpc.006262
10.1073/pnas.95.23.13976
10.1126/science.277.5331.1505
10.1093/pcp/pcf061
10.1093/pcp/pce010
10.1073/pnas.95.26.15189
10.1074/jbc.M300577200
10.1074/jbc.M401024200
Dates
Type | When |
---|---|
Created | 19 years, 2 months ago (June 7, 2006, 12:42 p.m.) |
Deposited | 1 year, 6 months ago (Feb. 4, 2024, 1:50 p.m.) |
Indexed | 1 day, 2 hours ago (Aug. 31, 2025, 6:04 a.m.) |
Issued | 19 years, 3 months ago (June 1, 2006) |
Published | 19 years, 3 months ago (June 1, 2006) |
Published Print | 19 years, 3 months ago (June 1, 2006) |
@article{Ashby_2006, title={Cyanobacterial Two-Component Proteins: Structure,Diversity, Distribution, andEvolution}, volume={70}, ISSN={1098-5557}, url={http://dx.doi.org/10.1128/mmbr.00046-05}, DOI={10.1128/mmbr.00046-05}, number={2}, journal={Microbiology and Molecular Biology Reviews}, publisher={American Society for Microbiology}, author={Ashby, Mark K. and Houmard, Jean}, year={2006}, month=jun, pages={472–509} }