Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACTBased on its genome sequence, the pathway of β-oxidative fatty acid degradation inSalmonella entericaserovar Typhimurium LT2 has been thought to be identical to the well-characterizedEscherichia coliK-12 system. We report that wild-type strains ofS. entericagrow on decanoic acid, whereas wild-typeE. colistrains cannot. Mutant strains (carryingfadR) of both organisms in which the genes of fatty acid degradation (fad) are expressed constitutively are readily isolated. TheS. enterica fadRstrains grow more rapidly than the wild-type strains on decanoic acid and also grow well on octanoic and hexanoic acids (which do not support growth of wild-type strains). By contrast,E. coli fadRstrains grow well on decanoic acid but grow only exceedingly slowly on octanoic acid and fail to grow at all on hexanoic acid. The two wild-type organisms also differed in the ability to grow on oleic acid when FadR was overexpressed. Under these superrepression conditions,E. colifailed to grow, whereasS. entericagrew well. Exchange of the wild-typefadRgenes between the two organisms showed this to be a property ofS. entericarather than of the FadR proteins per se. This difference in growth was attributed toS. entericahaving higher cytosolic levels of the inducing ligands, long-chain acyl coenzyme As (acyl-CoAs). The most striking results were the differences in the compositions of CoA metabolites of strains grown with octanoic acid or oleic acid.S. entericacleanly converted all of the acid to acetyl-CoA, whereasE. coliaccumulated high levels of intermediate-chain-length products. Exchange of homologous genes between the two organisms showed that theS. entericaFadE and FadBA enzymes were responsible for the greater efficiency of β-oxidation relative to that ofE. coli.

Bibliography

Iram, S. H., & Cronan, J. E. (2006). The β-Oxidation Systems ofEscherichia coliandSalmonella entericaAre Not Functionally Equivalent. Journal of Bacteriology, 188(2), 599–608.

Authors 2
  1. Surtaj Hussain Iram (first)
  2. John E. Cronan (additional)
References 39 Referenced 68
  1. Bachman, B. J. 1972. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol. Rev.36:524-527. / Bacteriol. Rev. (1972)
  2. Black, P. N., and C. C. DiRusso. 1994. Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli. Biochim. Biophys. Acta1210:123-145. (10.1016/0005-2760(94)90113-9) / Biochim. Biophys. Acta (1994)
  3. 10.1016/0003-2697(76)90527-3
  4. 10.1128/JB.184.13.3759-3764.2002
  5. 10.1128/JB.183.20.5982-5990.2001
  6. Campbell, J. W., R. M. Morgan-Kiss, and J. E. Cronan, Jr. 2003. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol. Microbiol.47:793-805. (10.1046/j.1365-2958.2003.03341.x) / Mol. Microbiol. (2003)
  7. Casadaban, M. J., and S. N. Cohen. 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol.138:179-207. (10.1016/0022-2836(80)90283-1) / J. Mol. Biol. (1980)
  8. Chang, A. C., and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol.134:1141-1156. (10.1128/JB.134.3.1141-1156.1978) / J. Bacteriol. (1978)
  9. 10.1016/0378-1119(95)00193-A
  10. 10.1128/jb.148.2.521-526.1981
  11. Clark, D. P., and J. E. Cronan, Jr. 1996. Two-carbon compounds and fatty acids as carbon sources, p. 343-357. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.). Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C. / Escherichia coli and Salmonella: cellular and molecular biology (1996)
  12. 10.1128/jb.179.5.1819-1823.1997
  13. 10.1128/jb.141.3.1291-1297.1980
  14. 10.1073/pnas.120163297
  15. DiRusso, C. C., T. L. Heimert, and A. K. Metzger. 1992. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J. Biol. Chem.267:8685-8691. (10.1016/S0021-9258(18)42497-0) / J. Biol. Chem. (1992)
  16. Ellermeier, C. D., A. Janakiraman, and J. M. Slauch. 2002. Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene290:153-161. (10.1016/S0378-1119(02)00551-6) / Gene (2002)
  17. Frerman, F. E. 1973. The role of acetyl coenzyme A: butyrate coenzyme A in the transferase uptake of butyrate by isolated membrane vesicles of Escherichia coli. Arch. Biochem. Biophys.159:444-452. (10.1016/0003-9861(73)90472-4) / Arch. Biochem. Biophys. (1973)
  18. Frerman, F. E., and W. Bennett. 1973. Studies on the uptake of fatty acids by Escherichia coli. Arch. Biochem. Biophys.159:434-443. (10.1016/0003-9861(73)90471-2) / Arch. Biochem. Biophys. (1973)
  19. 10.1128/jb.178.15.4704-4709.1996
  20. 10.1128/JB.183.21.6384-6393.2001
  21. Henry, M. F., and J. E. Cronan, Jr. 1992. A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell70:671-679. (10.1016/0092-8674(92)90435-F) / Cell (1992)
  22. Iram, S. H., and J. E. Cronan. 2005. Unexpected functional diversity among FadR fatty acid transcriptional regulatory proteins. J. Biol. Chem.280:32148-32156. (10.1074/jbc.M504054200) / J. Biol. Chem. (2005)
  23. 10.1128/jb.169.1.42-52.1987
  24. Kameda, K., and W. D. Nunn. 1981. Purification and characterization of acyl coenzyme A synthetase from Escherichia coli. J. Biol. Chem.256:5702-5707. (10.1016/S0021-9258(19)69262-8) / J. Biol. Chem. (1981)
  25. Klein, K., R. Steinberg, B. Fiethen, and P. Overath. 1971. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur. J. Biochem.19:442-450. (10.1111/j.1432-1033.1971.tb01334.x) / Eur. J. Biochem. (1971)
  26. Maloy, S. R., C. L. Ginsburgh, R. W. Simons, and W. D. Nunn. 1981. Transport of long and medium chain fatty acids by Escherichia coli K12. J. Biol. Chem.256:3735-3742. (10.1016/S0021-9258(19)69516-5) / J. Biol. Chem. (1981)
  27. Miller J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
  28. Miller J. H. 1992. A short course in bacterial genetics. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
  29. Morgan-Kiss, R. M., and J. E. Cronan. 2004. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J. Biol. Chem.279:37324-37333. (10.1074/jbc.M405233200) / J. Biol. Chem. (2004)
  30. 10.1128/mr.50.2.179-192.1986
  31. Overath, P., G. Pauli, and H. U. Schairer. 1969. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur. J. Biochem.7:559-574. (10.1111/j.1432-1033.1969.tb19644.x) / Eur. J. Biochem. (1969)
  32. Overath, P., and E. M. Raufuss. 1967. The induction of the enzymes of fatty acid degradation in Escherichia coli. Biochem. Biophys. Res. Commun.29:28-33. (10.1016/0006-291X(67)90535-9) / Biochem. Biophys. Res. Commun. (1967)
  33. Pauli, G., and P. Overath. 1972. ato Operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. Eur. J. Biochem.29:553-562. (10.1111/j.1432-1033.1972.tb02021.x) / Eur. J. Biochem. (1972)
  34. Platt, R., D. L. Reynolds, and G. J. Phillips. 2003. Development of a novel method of lytic phage delivery by use of a bacteriophage P22 site-specific recombination system. FEMS Microbiol. Lett.223:259-265. (10.1016/S0378-1097(03)00388-4) / FEMS Microbiol. Lett. (2003)
  35. Roughan, G. 1994. A semi-preparative enzymic synthesis of malonyl-CoA from [14C]acetate and 14CO2: labelling in the 1, 2 or 3 position. Biochem. J.300:355-358. (10.1042/bj3000355) / Biochem. J. (1994)
  36. Spector, M. P., C. C. DiRusso, M. J. Pallen, F. Garcia del Portillo, G. Dougan, and B. B. Finlay. 1999. The medium-long-chain fatty acyl-CoA dehydrogenase (fadF) gene of Salmonella typhimurium is a phase 1 starvation-stress response (SSR) locus. Microbiology145:15-31. (10.1099/13500872-145-1-15) / Microbiology (1999)
  37. 10.1016/0076-6879(90)85008-C
  38. 10.1128/JB.180.17.4596-4602.1998
  39. 10.1128/jb.97.2.827-836.1969
Dates
Type When
Created 19 years, 8 months ago (Dec. 29, 2005, 3:12 p.m.)
Deposited 1 year, 7 months ago (Feb. 1, 2024, 6:57 p.m.)
Indexed 6 days, 23 hours ago (Aug. 30, 2025, 12:54 p.m.)
Issued 19 years, 7 months ago (Jan. 15, 2006)
Published 19 years, 7 months ago (Jan. 15, 2006)
Published Print 19 years, 7 months ago (Jan. 15, 2006)
Funders 0

None

@article{Iram_2006, title={The β-Oxidation Systems ofEscherichia coliandSalmonella entericaAre Not Functionally Equivalent}, volume={188}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.188.2.599-608.2006}, DOI={10.1128/jb.188.2.599-608.2006}, number={2}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Iram, Surtaj Hussain and Cronan, John E.}, year={2006}, month=jan, pages={599–608} }