Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT Flagellate bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium typically express 5 to 12 flagellar filaments over their cell surface that rotate in clockwise (CW) and counterclockwise directions. These bacteria modulate their swimming direction towards favorable environments by biasing the direction of flagellar rotation in response to various stimuli. In contrast, Rhodobacter sphaeroides expresses a single subpolar flagellum that rotates only CW and responds tactically by a series of biased stops and starts. Rotor protein FliG transiently links the MotAB stators to the rotor, to power rotation and also has an essential function in flagellar export. In this study, we sought to determine whether the FliG protein confers directionality on flagellar motors by testing the functional properties of R. sphaeroides FliG and a chimeric FliG protein, EcRsFliG (N-terminal and central domains of E. coli FliG fused to an R. sphaeroides FliG C terminus), in an E. coli FliG null background. The EcRsFliG chimera supported flagellar synthesis and bidirectional rotation; bacteria swam and tumbled in a manner qualitatively similar to that of the wild type and showed chemotaxis to amino acids. Thus, the FliG C terminus alone does not confer the unidirectional stop-start character of the R. sphaeroides flagellar motor, and its conformation continues to support tactic, switch-protein interactions in a bidirectional motor, despite its evolutionary history in a bacterium with a unidirectional motor.

Bibliography

Morehouse, K. A., Goodfellow, I. G., & Sockett, R. E. (2005). A Chimeric N-Terminal Escherichia coli -C-Terminal Rhodobacter sphaeroides FliG Rotor Protein Supports Bidirectional E. coli Flagellar Rotation and Chemotaxis. Journal of Bacteriology, 187(5), 1695–1701.

Authors 3
  1. Karen A. Morehouse (first)
  2. Ian G. Goodfellow (additional)
  3. R. Elizabeth Sockett (additional)
References 38 Referenced 7
  1. 10.1128/jb.161.3.955-962.1985
  2. 10.1128/jb.169.2.514-518.1987
  3. 10.1128/jb.93.1.390-398.1967
  4. Berg, H. C. 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem.72:19-54. (10.1146/annurev.biochem.72.121801.161737) / Annu. Rev. Biochem. (2003)
  5. Blair, D. F. 2003. Flagellar movement driven by proton translocation. FEBS Lett.545:86-95. (10.1016/S0014-5793(03)00397-1) / FEBS Lett. (2003)
  6. Brown, P. N., C. P. Hill, and D. F. Blair. 2002. Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO J.21:3225-3234. (10.1093/emboj/cdf332) / EMBO J. (2002)
  7. Budrene, E. O., and H. C. Berg. 1991. Complex patterns formed by motile cells of Escherichia coli. Nature349:630-633. (10.1038/349630a0) / Nature (1991)
  8. 10.1128/jb.170.1.320-329.1988
  9. Edge M. E. 2000. Analysis of flagellar switch proteins in Rhodobacter sphaeroides . Ph.D. thesis. University of Nottingham Nottingham United Kingdom.
  10. Garza, A. G., R. Biran, J. Wohlschlegel, and M. D. Manson. 1996. Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor. J. Mol. Biol.25:270-285. / J. Mol. Biol. (1996)
  11. Goodfellow I. G. P. 1996. The unidirectional flagellum of R. sphaeroides : cloning and analysis of genes encoding regulatory structural and motor components. D.Phil. thesis. University of Nottingham Nottingham United Kingdom.
  12. Goodfellow, I. G. P., C. E. Pollitt, and R. E. Sockett. 1996. Cloning of the fliI gene from Rhodobacter sphaeroides WS8 by analysis of a transposon mutant with impaired motility. FEMS Microbiol. Lett.142:111-116. (10.1111/j.1574-6968.1996.tb08416.x) / FEMS Microbiol. Lett. (1996)
  13. 10.1128/JB.182.15.4234-4240.2000
  14. 10.1128/jb.175.3.802-810.1993
  15. 10.1016/0378-1119(88)90117-5
  16. 10.1128/JB.182.11.3022-3028.2000
  17. Kojima, S., and D. F. Blair. 2001. Conformational change in the stator of the bacteria flagellar motor. Biochemistry40:13041-13050. (10.1021/bi011263o) / Biochemistry (2001)
  18. Lloyd, S. A., and D. F. Blair. 1997. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J. Mol. Biol.266:733-744. (10.1006/jmbi.1996.0836) / J. Mol. Biol. (1997)
  19. 10.1128/jb.178.1.223-231.1996
  20. Lloyd, S. A., F. G. Whitby, D. F. Blair, and C. P. Hill. 1999. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature400:472-475. (10.1038/22794) / Nature (1999)
  21. Escherichia coli and Salmonella: cellular and molecular biology 1996
  22. Macnab, R. M. 2003. How bacteria assemble flagella. Annu. Rev. Microbiol.57:77-100. (10.1146/annurev.micro.57.030502.090832) / Annu. Rev. Microbiol. (2003)
  23. Marykwas, D. L., S. A. Schmidt, and H. C. Berg. 1996. Interacting components of the flagellar motor of Escherichia coli revealed by the two-hybrid system in yeast. J. Mol. Biol.256:564-576. (10.1006/jmbi.1996.0109) / J. Mol. Biol. (1996)
  24. 10.1128/jb.174.7.2298-2304.1992
  25. Sambrook J. E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual 2nd ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
  26. Schmitt, R. 2003. Helix rotation model of the flagellar rotary motor. Biophys. J.85:843-852. (10.1016/S0006-3495(03)74524-X) / Biophys. J. (2003)
  27. 10.1128/JB.182.18.5218-5224.2000
  28. 10.1038/nbt1183-784
  29. Sistrom, W. R. 1962. The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides.J. Gen. Microbiol.28:607-616. (10.1099/00221287-28-4-607) / J. Gen. Microbiol. (1962)
  30. Sockett, R. E., J. C. A. Foster, and J. P. Armitage. 1990. Molecular biology of the Rhodobacter sphaeroides flagellum. FEMS Symp.53:473-479. / FEMS Symp. (1990)
  31. 10.1128/JB.183.21.6404-6412.2001
  32. Vieira, J., and J. Messing. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene19:259-268. (10.1016/0378-1119(82)90015-4) / Gene (1982)
  33. 10.1128/jb.170.10.4509-4515.1988
  34. Woodcock, D. M., P. J. Crowther, J. Doherty, S. Jefferson, E. DeCruz, M. Noyer-Weidner, S. S. Smith, M. Z. Michael, and M. W. Graham. 1989. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res.17:3469-3478. (10.1093/nar/17.9.3469) / Nucleic Acids Res. (1989)
  35. 10.1016/0378-1119(85)90120-9
  36. Yorimitsu, T., A. Mimaki, T. Yakushi, and M. Homma. 2003. The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. J. Mol. Biol.334:567-583. (10.1016/j.jmb.2003.09.052) / J. Mol. Biol. (2003)
  37. Zhou, J., S. A. Lloyd, and D. F. Blair. 1998. Electrostatic interactions between the rotor and stator in the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA95:6436-6441. (10.1073/pnas.95.11.6436) / Proc. Natl. Acad. Sci. USA (1998)
  38. 10.1128/JB.180.10.2729-2735.1998
Dates
Type When
Created 20 years, 6 months ago (Feb. 16, 2005, 3:59 p.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 1:26 p.m.)
Indexed 1 year, 1 month ago (July 31, 2024, 9:39 p.m.)
Issued 20 years, 6 months ago (March 1, 2005)
Published 20 years, 6 months ago (March 1, 2005)
Published Print 20 years, 6 months ago (March 1, 2005)
Funders 0

None

@article{Morehouse_2005, title={A Chimeric N-Terminal Escherichia coli -C-Terminal Rhodobacter sphaeroides FliG Rotor Protein Supports Bidirectional E. coli Flagellar Rotation and Chemotaxis}, volume={187}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.187.5.1695-1701.2005}, DOI={10.1128/jb.187.5.1695-1701.2005}, number={5}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Morehouse, Karen A. and Goodfellow, Ian G. and Sockett, R. Elizabeth}, year={2005}, month=mar, pages={1695–1701} }