Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACTBacteria inhabiting biofilms usually produce one or more polysaccharides that provide a hydrated scaffolding to stabilize and reinforce the structure of the biofilm, mediate cell-cell and cell-surface interactions, and provide protection from biocides and antimicrobial agents. Historically, alginate has been considered the major exopolysaccharide of thePseudomonas aeruginosabiofilm matrix, with minimal regard to the different functions polysaccharides execute. Recent chemical and genetic studies have demonstrated that alginate is not involved in the initiation of biofilm formation inP. aeruginosastrains PAO1 and PA14. We hypothesized that there is at least one other polysaccharide gene cluster involved in biofilm development. Two separate clusters of genes with homology to exopolysaccharide biosynthetic functions were identified from the annotated PAO1 genome. Reverse genetics was employed to generate mutations in genes from these clusters. We discovered that one group of genes, designatedpsl, are important for biofilm initiation. A PAO1 strain with a disruption of the first two genes of thepslcluster (PA2231 and PA2232) was severely compromised in biofilm initiation, as confirmed by static microtiter and continuous culture flow cell and tubing biofilm assays. This impaired biofilm phenotype could be complemented with the wild-typepslsequences and was not due to defects in motility or lipopolysaccharide biosynthesis. These results implicate an as yet unknown exopolysaccharide as being required for the formation of the biofilm matrix. Understandingpsl-encoded exopolysaccharide expression and protection in biofilms will provide insight into the pathogenesis ofP. aeruginosain cystic fibrosis and other infections involving biofilms.

Bibliography

Jackson, K. D., Starkey, M., Kremer, S., Parsek, M. R., & Wozniak, D. J. (2004). Identification ofpsl, a Locus Encoding a Potential Exopolysaccharide That Is Essential forPseudomonas aeruginosaPAO1 Biofilm Formation. Journal of Bacteriology, 186(14), 4466–4475.

Authors 5
  1. Kara D. Jackson (first)
  2. Melissa Starkey (additional)
  3. Stefanie Kremer (additional)
  4. Matthew R. Parsek (additional)
  5. Daniel J. Wozniak (additional)
References 65 Referenced 346
  1. 10.1128/IAI.66.3.1000-1007.1998
  2. 10.1128/jb.179.17.5574-5581.1997
  3. Baynham, P. J., and D. J. Wozniak. 1996. Identification and characterization of AlgZ, an AlgT-dependent DNA binding protein required for Pseudomonas aeruginosa algD transcription. Mol. Microbiol. 22 : 97-108. (10.1111/j.1365-2958.1996.tb02659.x) / Mol. Microbiol. (1996)
  4. 10.1128/iai.24.3.837-842.1979
  5. Christensen, B., C. Sternberg, J. B. Andersen, R. J. Palmer, A. T. Nielsen, M. Givskov, and S. Molin. 1999. Molecular tools to study biofilm physiology. Methods Enzymol. 310 : 20-42. (10.1016/S0076-6879(99)10004-1) / Methods Enzymol. (1999)
  6. 10.1128/jcm.22.6.996-1006.1985
  7. Costerton, J. W. 2001. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol. 9 : 50-52. (10.1016/S0966-842X(00)01918-1) / Trends Microbiol. (2001)
  8. 10.1146/annurev.mi.49.100195.003431
  9. 10.1128/jb.176.12.3500-3507.1994
  10. 10.1128/JB.182.12.3593-3596.2000
  11. 10.1126/science.280.5361.295
  12. 10.1128/jb.116.2.915-924.1973
  13. 10.1073/pnas.76.4.1648
  14. Friedman, L., and R. Kolter. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51 : 675-690. (10.1046/j.1365-2958.2003.03877.x) / Mol. Microbiol. (2004)
  15. 10.1128/JB.186.14.4457-4465.2004
  16. 10.1128/jb.175.5.1303-1308.1993
  17. 10.1128/mr.60.3.539-574.1996
  18. 10.1128/JB.185.18.5431-5441.2003
  19. 10.1128/JB.183.18.5395-5401.2001
  20. 10.1128/jb.154.1.269-277.1983
  21. Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: applications for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212 : 77-86. (10.1016/S0378-1119(98)00130-9) / Gene (1998)
  22. Huang, B., C. B. Whitchurch, L. Croft, S. A. Beatson, and J. S. Mattick. 2000. A minimal tiling path cosmid library for functional analysis of the Pseudomonas aeruginosa PAO1 genome. Microb. Comp. Genomics 5 : 189-203. (10.1089/omi.1.2000.5.189) / Microb. Comp. Genomics (2000)
  23. 10.1128/jb.144.2.844-847.1980
  24. 10.1128/jb.174.3.1068-1071.1992
  25. Klausen, M., A. Heydorn, P. Ragas, L. Lambertsen, A. Aaes-Jorgensen, S. Molin, and T. Tolker-Nielsen. 2003. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 48 : 1511-1524. (10.1046/j.1365-2958.2003.03525.x) / Mol. Microbiol. (2003)
  26. Kocharova, N., K. Hatano, A. Shaskov, Y. Knirel, N. Kochetkov, and G. Pier. 1989. The structure and serologic distribution of an extracellular neutral polysaccharide from Pseudomonas aeruginosa immunotype 3. J. Biol. Chem. 264 : 15569-15573. (10.1016/S0021-9258(19)84869-X) / J. Biol. Chem. (1989)
  27. 10.1128/iai.28.2.546-556.1980
  28. 10.1128/AEM.64.8.2906-2913.1998
  29. Liu, P. V. 1966. The roles of various fractions of Pseudomonas aeruginosa on its pathogenesis. II. Effects of lecithinase and protease. J. Infect. Dis. 116 : 481-489. (10.1093/infdis/116.4.481) / J. Infect. Dis. (1966)
  30. Lyczak, J. B., C. Cannon, and G. B. Pier. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2 : 1051-1060. (10.1016/S1286-4579(00)01259-4) / Microbes Infect. (2000)
  31. 10.1128/JB.180.4.956-968.1998
  32. 10.1128/jb.178.1.175-183.1996
  33. Mah, T. C., and G. A. O'Toole. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9 : 34-39. (10.1016/S0966-842X(00)01913-2) / Trends Microbiol. (2001)
  34. 10.1128/JB.186.14.4449-4456.2004
  35. 10.1128/IAI.66.10.4711-4720.1998
  36. Nimtz, M., A. Mort, T. Domke, V. Wray, Y. Zhang, F. Qiu, D. Coplin, and K. Geider. 1996. Structure of amylovoran, the capsular exopolysaccharide from the fire blight pathogen Erwinia amylovora. Carbohydr. Res. 287 : 59-76. (10.1016/0008-6215(96)00070-5) / Carbohydr. Res. (1996)
  37. 10.1128/JB.183.3.1047-1057.2001
  38. 10.1128/iai.33.1.142-148.1981
  39. O'Toole, G., H. B. Kaplan, and R. Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54 : 49-79. (10.1146/annurev.micro.54.1.49) / Annu. Rev. Microbiol. (2000)
  40. 10.1016/S0076-6879(99)10008-9
  41. 10.1046/j.1365-2958.1998.00797.x
  42. O'Toole, G. A., and R. Kolter. 1998. Flagellar and twitching motilities are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30 : 295-304. (10.1046/j.1365-2958.1998.01062.x) / Mol. Microbiol. (1998)
  43. Pier, G. B. 1998. Pseudomonas aeruginosa: a key problem in cystic fibrosis. ASM News 6 : 339-347. / ASM News (1998)
  44. 10.1128/MMBR.63.3.523-553.1999
  45. Rocchetta, H. L., J. C. Pacan, and J. S. Lam. 1998. Synthesis of the A-band polysaccharide sugar d-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa. Mol. Microbiol. 29 : 1419-1434. (10.1046/j.1365-2958.1998.01024.x) / Mol. Microbiol. (1998)
  46. 10.1128/jb.184.4.1140-1154.2002
  47. Schaefer A. L. E. P. Greenberg and M. R. Parsek. 2001. Acylated homoserine lactone detection in Pseudomonas aeruginosa biofilms by radiolabel assay p. 41-47. In R. J. Doyle (ed.) Microbial growth in biofilms part A: developmental and molecular biological aspects. Academic Press New York N.Y. (10.1016/S0076-6879(01)36576-X)
  48. Schweizer, H. P. 1993. Small broad-host-range gentamycin resistance cassettes for site-specific insertion and deletion mutagenesis. BioTechniques 15 : 831-833. / BioTechniques (1993)
  49. Schweizer, H. P., and T. T. Hoang. 1995. An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158 : 15-22. (10.1016/0378-1119(95)00055-B) / Gene (1995)
  50. Semmler, A., C. B. Whitchurch, and J. S. Mattick. 1999. A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145 : 2863-2873. (10.1099/00221287-145-10-2863) / Microbiology (1999)
  51. Singh, P. K., A. L. Schaefer, M. R. Parsek, T. O. Moninger, M. J. Welsh, and E. P. Greenberg. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407 : 762-764. (10.1038/35037627) / Nature (2000)
  52. Stephens, C. 2002. Microbiology: breaking down biofilms. Curr. Biol. 12 : R132-R134. (10.1016/S0960-9822(02)00706-6) / Curr. Biol. (2002)
  53. 10.1016/S0140-6736(01)05321-1
  54. 10.1038/35023079
  55. Strevett, K., and G. Chen. 2003. Microbial surface thermodynamics and applications. Res. Microbiol. 154 : 329-335. (10.1016/S0923-2508(03)00038-X) / Res. Microbiol. (2003)
  56. Tsuneda, S., H. Aikawa, H. Hayaski, A. Yuasa, and A. Hirata. 2003. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol. Lett. 223 : 287-292. (10.1016/S0378-1097(03)00399-9) / FEMS Microbiol. Lett. (2003)
  57. Vieira, J., and J. Messing. 1991. New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100 : 189-194. (10.1016/0378-1119(91)90365-I) / Gene (1991)
  58. Whitchurch, C. B., T. Tolker-Nielsen, P. C. Ragas, and J. S. Mattick. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295 : 1487. (10.1126/science.295.5559.1487) / Science (2002)
  59. Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100 : 8484-8489. (10.1073/pnas.0832438100) / Proc. Natl. Acad. Sci. USA (2003)
  60. 10.1128/JB.181.1.107-116.1999
  61. 10.1128/JB.185.24.7297-7300.2003
  62. Wozniak, D. J., T. J. O. Wyckoff, M. Starkey, R. Keyser, P. Azadi, G. A. O'Toole, and M. R. Parsek. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 100 : 7907-7912. (10.1073/pnas.1231792100) / Proc. Natl. Acad. Sci. USA (2003)
  63. Wyckoff, T. J. O., B. Thomas, D. J. Hassett, and D. J. Wozniak. 2002. Static growth of mucoid Pseudomonas aeruginosa selects for non-mucoid variants that have acquired flagellum-dependent motility. Microbiology 148 : 3423-3430. (10.1099/00221287-148-11-3423) / Microbiology (2002)
  64. Wyckoff, T. J. O., and D. J. Wozniak. 2001. Transcriptional analysis of genes involved in Pseudomonas aeruginosa biofilms. Methods Enzymol. 336 : 144-151. (10.1016/S0076-6879(01)36586-2) / Methods Enzymol. (2001)
  65. Yildiz, F. H., and G. K. Schoolnik. 1999. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. USA 96 : 4028-4033. (10.1073/pnas.96.7.4028) / Proc. Natl. Acad. Sci. USA (1999)
Dates
Type When
Created 21 years, 1 month ago (July 1, 2004, 5:15 p.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 3:11 p.m.)
Indexed 2 months ago (June 21, 2025, 7:44 a.m.)
Issued 21 years, 1 month ago (July 15, 2004)
Published 21 years, 1 month ago (July 15, 2004)
Published Print 21 years, 1 month ago (July 15, 2004)
Funders 0

None

@article{Jackson_2004, title={Identification ofpsl, a Locus Encoding a Potential Exopolysaccharide That Is Essential forPseudomonas aeruginosaPAO1 Biofilm Formation}, volume={186}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.186.14.4466-4475.2004}, DOI={10.1128/jb.186.14.4466-4475.2004}, number={14}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Jackson, Kara D. and Starkey, Melissa and Kremer, Stefanie and Parsek, Matthew R. and Wozniak, Daniel J.}, year={2004}, month=jul, pages={4466–4475} }