Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT Previously, it has been demonstrated that the membrane fatty acid composition of Streptococcus mutans is affected by growth pH (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70: 929-936, 2004; R. G. Quivey, Jr., R. Faustoferri, K. Monahan, and R. Marquis, FEMS Microbiol. Lett. 189: 89-92, 2000). Specifically, the proportion of monounsaturated fatty acids increases when the organism is grown in acidic environments; if the shift to increased monounsaturated fatty acids is blocked by the addition of a fatty acid biosynthesis inhibitor, the organism is rendered more acid sensitive (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70: 929-936, 2004). Recently, work with Streptococcus pneumoniae has identified a novel enzyme, FabM, responsible for the production of monounsaturated fatty acids (H. Marrakchi, K. H. Choi, and C. O. Rock, J. Biol. Chem. 277: 44809-44816, 2002). Using the published S. pneumoniae sequence, a putative FabM was identified in the S. mutans strain UA159. We generated a fabM strain that does not produce unsaturated fatty acids as determined by gas chromatography of fatty acid methyl esters. The mutant strain was extremely sensitive to low pH in comparison to the wild type; however, the acid-sensitive phenotype was relieved by growth in the presence of long-chain monounsaturated fatty acids or through genetic complementation. The strain exhibited reduced glycolytic capability and altered glucose-PTS activity. In addition, the altered membrane composition was more impermeable to protons and did not maintain a normal ΔpH. The results suggest that altered membrane composition can significantly affect the acid survival capabilities, as well as several enzymatic activities, of S. mutans .

Bibliography

Fozo, E. M., & Quivey, R. G. (2004). The fabM Gene Product of Streptococcus mutans Is Responsible for the Synthesis of Monounsaturated Fatty Acids and Is Necessary for Survival at Low pH. Journal of Bacteriology, 186(13), 4152–4158.

Authors 2
  1. Elizabeth M. Fozo (first)
  2. Robert G. Quivey (additional)
References 39 Referenced 112
  1. 10.1128/JB.181.22.7028-7033.1999
  2. Ajdic, D., W. M. McShan, R. E. McLaughlin, G. Savic, J. Chang, M. B. Carson, C. Primeaux, R. Tian, S. Kenton, H. Jia, S. Lin, Y. Qian, S. Li, H. Zhu, F. Najar, H. Lai, J. White, B. A. Roe, and J. J. Ferretti. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 99 : 14434-14439. (10.1073/pnas.172501299) / Proc. Natl. Acad. Sci. USA (2002)
  3. 10.1016/S0022-2836(05)80360-2
  4. 10.1128/iai.53.3.587-594.1986
  5. 10.1128/aem.57.4.1134-1138.1991
  6. Belli, W. A., and R. E. Marquis. 1994. Catabolite modification of acid tolerance of Streptococcus mutans GS-5. Oral Microbiol. Immunol. 9 : 29-34. (10.1111/j.1399-302X.1994.tb00211.x) / Oral Microbiol. Immunol. (1994)
  7. Bencini, D. A., M. S. Shanley, J. R. Wild, and G. A. O'Donovan. 1983. New assay for enzymatic phosphate release: application to aspartate transcarbamylase and other enzymes. Anal. Biochem. 132 : 259-264. (10.1016/0003-2697(83)90005-2) / Anal. Biochem. (1983)
  8. Bencini, D. A., J. R. Wild, and G. A. O'Donovan. 1983. Linear one-step assay for the determination of orthophosphate. Anal. Biochem. 132 : 254-258. (10.1016/0003-2697(83)90004-0) / Anal. Biochem. (1983)
  9. 10.1128/iai.53.2.331-338.1986
  10. Bhakoo, M., and R. N. McElhaney. 1988. The effect of variations in growth temperature, fatty acid composition and cholesterol content on the lipid polar head-group composition of Acholeplasma laidlawii B membranes. Biochim. Biophys. Acta 945 : 307-314. (10.1016/0005-2736(88)90493-2) / Biochim. Biophys. Acta (1988)
  11. Birnboim, H. C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7 : 1513-1523. (10.1093/nar/7.6.1513) / Nucleic Acids Res. (1979)
  12. Bligh, E. G., and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Med. Sci. 37 : 911-917. / Can. J. Med. Sci. (1959)
  13. 10.1146/annurev.micro.55.1.305
  14. Chang, Y. Y., and J. E. Cronan, Jr. 1999. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 33 : 249-259. (10.1046/j.1365-2958.1999.01456.x) / Mol. Microbiol. (1999)
  15. 10.1128/iai.64.2.585-592.1996
  16. 10.1128/IAI.68.5.2621-2629.2000
  17. de Mendoza, D., A. Klages Ulrich, and J. E. Cronan, Jr. 1983. Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I. J. Biol. Chem. 258 : 2098-2101. (10.1016/S0021-9258(18)32888-6) / J. Biol. Chem. (1983)
  18. DiRusso, C. C., P. N. Black, and J. D. Weimar. 1999. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog. Lipid Res. 38 : 129-197. (10.1016/S0163-7827(98)00022-8) / Prog. Lipid Res. (1999)
  19. 10.1128/AEM.70.2.929-936.2004
  20. Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease. 1989. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77 : 61-68. (10.1016/0378-1119(89)90359-4) / Gene (1989)
  21. Kuhnert W. L. 1999. The F-ATPase operon from the oral streptococci S. mutans and S. sanguis : how structure relates to function. Ph.D. thesis. University of Rochester Rochester N.Y.
  22. 10.1128/JB.185.5.1525-1533.2003
  23. Ma, Y., and R. E. Marquis. 1997. Thermophysiology of Streptococcus mutans and related lactic-acid bacteria. Antonie Leeuwenhoek 72 : 91-100. (10.1023/A:1000290426248) / Antonie Leeuwenhoek (1997)
  24. Marrakchi, H., K. H. Choi, and C. O. Rock. 2002. A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J. Biol. Chem. 277 : 44809-44816. (10.1074/jbc.M208920200) / J. Biol. Chem. (2002)
  25. Marrakchi, H., Y. M. Zhang, and C. O. Rock. 2002. Mechanistic diversity and regulation of type II fatty acid synthesis. Biochem. Soc. Trans. 30 : 1050-1055. (10.1042/bst0301050) / Biochem. Soc. Trans. (2002)
  26. Martin-Galiano, A. J., M. J. Ferrandiz, and A. G. de la Campa. 2001. The promoter of the operon encoding the F0F1 ATPase of Streptococcus pneumoniae is inducible by pH. Mol. Microbiol. 41 : 1327-1338. (10.1046/j.1365-2958.2001.02597.x) / Mol. Microbiol. (2001)
  27. McElhaney, R. N. 1974. The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures. J. Mol. Biol. 84 : 145-157. (10.1016/0022-2836(74)90218-6) / J. Mol. Biol. (1974)
  28. McElhaney, R. N., and K. A. Souza. 1976. The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus. Biochim. Biophys. Acta 443 : 348-359. / Biochim. Biophys. Acta (1976)
  29. 10.1128/iai.54.2.273-282.1986
  30. Payne, D. J., P. V. Warren, D. J. Holmes, Y. Ji, and J. T. Lonsdale. 2001. Bacterial fatty-acid biosynthesis: a genomics-driven target for antibacterial drug discovery. Drug Discov. Today 6 : 537-544. (10.1016/S1359-6446(01)01774-3) / Drug Discov. Today (2001)
  31. Phan, T. N., P. T. Nguyen, J. Abranches, and R. E. Marquis. 2002. Fluoride and organic weak acids as respiration inhibitors for oral streptococci in acidified environments. Oral Microbiol. Immunol. 17 : 119-124. (10.1046/j.0902-0055.2001.00103.x) / Oral Microbiol. Immunol. (2002)
  32. Projan, S. J. 2002. New (and not so new) antibacterial targets—from where and when will the novel drugs come? Curr. Opin. Pharmacol. 2 : 513-522. (10.1016/S1471-4892(02)00197-2) / Curr. Opin. Pharmacol. (2002)
  33. Quivey, R. G., Jr., R. Faustoferri, K. Monahan, and R. Marquis. 2000. Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. FEMS Microbiol. Lett. 189 : 89-92. (10.1111/j.1574-6968.2000.tb09211.x) / FEMS Microbiol. Lett. (2000)
  34. Quivey, R. G., Jr., R. C. Faustoferri, W. A. Belli, and J. S. Flores. 1991. Polymerase chain reaction amplification, cloning, sequence determination and homologies of streptococcal ATPase-encoding DNAs. Gene 97 : 63-68. (10.1016/0378-1119(91)90010-9) / Gene (1991)
  35. Quivey, R. G., Jr., W. L. Kuhnert, and K. Hahn. 2000. Adaptation of oral streptococci to low pH. Adv. Microb. Physiol. 42 : 239-274. (10.1016/S0065-2911(00)42004-7) / Adv. Microb. Physiol. (2000)
  36. Rock, C. O., and S. Jackowski. 2002. Forty years of bacterial fatty acid synthesis. Biochem. Biophys. Res. Commun. 292 : 1155-1166. (10.1006/bbrc.2001.2022) / Biochem. Biophys. Res. Commun. (2002)
  37. Sambrook J. E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual 2nd ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
  38. Sato, M., H. Tsuchiya, H. Tani, K. Yamamoto, R. Yamaguchi, H. Nitta, N. Kanematsu, I. Namikawa, and N. Takagi. 1991. Incorporation of fatty acids by Streptococcus mutans. FEMS Microbiol. Lett. 65 : 117-121. / FEMS Microbiol. Lett. (1991)
  39. Wen, Z. T., and R. A. Burne. 2001. Construction of a new integration vector for use in Streptococcus mutans. Plasmid 45 : 31-36. (10.1006/plas.2000.1498) / Plasmid (2001)
Dates
Type When
Created 21 years, 2 months ago (June 17, 2004, 3:03 p.m.)
Deposited 4 years ago (July 29, 2021, 1:16 p.m.)
Indexed 1 month ago (July 25, 2025, 6:16 a.m.)
Issued 21 years, 1 month ago (July 1, 2004)
Published 21 years, 1 month ago (July 1, 2004)
Published Print 21 years, 1 month ago (July 1, 2004)
Funders 0

None

@article{Fozo_2004, title={The fabM Gene Product of Streptococcus mutans Is Responsible for the Synthesis of Monounsaturated Fatty Acids and Is Necessary for Survival at Low pH}, volume={186}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.186.13.4152-4158.2004}, DOI={10.1128/jb.186.13.4152-4158.2004}, number={13}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Fozo, Elizabeth M. and Quivey, Robert G.}, year={2004}, month=jul, pages={4152–4158} }