Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT The studies reported here identify propionyl coenzyme A (propionyl-CoA) as the common intermediate in the 1,2-propanediol and propionate catabolic pathways of Salmonella enterica serovar Typhimurium LT2. Growth on 1,2-propanediol as a carbon and energy source led to the formation and excretion of propionate, whose activation to propionyl-CoA relied on the activities of the propionate kinase (PduW)/phosphotransacetylase (Pta) enzyme system and the CobB sirtuin-controlled acetyl-CoA and propionyl-CoA (Acs, PrpE) synthetases. The different affinities of these systems for propionate ensure sufficient synthesis of propionyl-CoA to support wild-type growth of S. enterica under low or high concentrations of propionate in the environment. These redundant systems of propionyl-CoA synthesis are needed because the prpE gene encoding the propionyl-CoA synthetase enzyme is part of the prpBCDE operon under the control of the PrpR regulatory protein, which needs 2-methylcitrate as a coactivator. Because the synthesis of 2-methylcitrate by PrpC (i.e., the 2-methylcitrate synthase enzyme) requires propionyl-CoA as a substrate, the level of propionyl-CoA needs to be raised by the Acs or PduW-Pta system before 2-methylcitrate can be synthesized and prpBCDE transcription can be activated.

Bibliography

Palacios, S., Starai, V. J., & Escalante-Semerena, J. C. (2003). Propionyl Coenzyme A Is a Common Intermediate in the 1,2-Propanediol and Propionate Catabolic Pathways Needed for Expression of the prpBCDE Operon during Growth of Salmonella enterica on 1,2-Propanediol. Journal of Bacteriology, 185(9), 2802–2810.

Authors 3
  1. Sergio Palacios (first)
  2. Vincent J. Starai (additional)
  3. Jorge C. Escalante-Semerena (additional)
References 45 Referenced 63
  1. 10.1128/AEM.32.6.781-791.1976
  2. 10.1128/jb.96.1.215-220.1968
  3. 10.1128/JB.181.19.5967-5975.1999
  4. 10.1128/jb.179.21.6633-6639.1997
  5. 10.1128/AEM.68.1.271-279.2002
  6. Brämer, C. O., and A. Steinbüchel. 2001. The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism. Microbiology147:2203-2214. (10.1099/00221287-147-8-2203) / Microbiology (2001)
  7. Brock, M., R. Fischer, D. Linder, and W. Buckel. 2000. Methylcitrate synthase from Aspergillus nidulans: implications for propionate as an antifungal agent. Mol. Microbiol.35:961-973. (10.1046/j.1365-2958.2000.01737.x) / Mol. Microbiol. (2000)
  8. Caetano-Annoles, G. 1993. Amplifying DNA with arbitrary oligonucleotide primers. PCR Methods Appl.3:85-92. (10.1101/gr.3.2.85) / PCR Methods Appl. (1993)
  9. 10.1128/jb.158.2.488-495.1984
  10. Chan, R. K., D. Botstein, T. Watanabe, and Y. Ogata. 1972. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high transducing lysate. Virology50:883-898. (10.1016/0042-6822(72)90442-4) / Virology (1972)
  11. 10.1128/JB.184.10.2728-2739.2002
  12. Cooper, R. A. 1984. Metabolism of methylglyoxal in microorganisms. Annu. Rev. Microbiol.38:49-68. (10.1146/annurev.mi.38.100184.000405) / Annu. Rev. Microbiol. (1984)
  13. Davis R. W. D. Botstein and J. R. Roth. 1980. A manual for genetic engineering: advanced bacterial genetics. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
  14. Dawson R. M. C. D. C. Elliott W. H. Elliott and K. M. Jones. 1986. Data for biochemical research third edition. Oxford University Press Oxford United Kingdom.
  15. Gerike, U., D. W. Hough, N. J. Russell, M. L. Dyall-Smith, and M. J. Danson. 1998. Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. Microbiology144:929-935. (10.1099/00221287-144-4-929) / Microbiology (1998)
  16. Gulick V. J. Starai A. R. Horswill K. M. Homick and J. C. Escalante-Semerena. 2003. Structure of acetylation-controlled acetyl-CoA synthetase bound to coenzyme A. Biochemistry 42 : 2866-2873. (10.1021/bi0271603)
  17. Gutheil, W. G., B. Holmquist, and B. L. Vallee. 1992. Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry31:475-481. (10.1021/bi00117a025) / Biochemistry (1992)
  18. 10.1128/jb.177.14.4121-4130.1995
  19. Hesslinger, C., S. A. Fairhurst, and G. Sawers. 1998. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades l-threonine to propionate. Mol. Microbiol.27:477-492. (10.1046/j.1365-2958.1998.00696.x) / Mol. Microbiol. (1998)
  20. Horswill, A. R., A. R. Dudding, and J. C. Escalante-Semerena. 2001. Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J. Biol. Chem.276:19094-19101. (10.1074/jbc.M100244200) / J. Biol. Chem. (2001)
  21. Horswill, A. R., and J. C. Escalante-Semerena. 2002. Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis. Biochemistry41:2379-2387. (10.1021/bi015647q) / Biochemistry (2002)
  22. Horswill, A. R., and J. C. Escalante-Semerena. 2001. In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry40:4703-4713. (10.1021/bi015503b) / Biochemistry (2001)
  23. 10.1128/jb.179.3.928-940.1997
  24. Horswill, A. R., and J. C. Escalante-Semerena. 1999. The prpE gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthetase. Microbiology145:1381-1388. (10.1099/13500872-145-6-1381) / Microbiology (1999)
  25. 10.1128/JB.181.18.5615-5623.1999
  26. 10.1128/JB.183.5.1577-1584.2001
  27. Lo, T. W. C., M. E. Westwood, A. C. McLellan, T. Selwood, and P. J. Thornalley. 1994. Binding and modification of proteins by methylglyoxal under physiological conditions. J. Biol. Chem.269:32299-32305. (10.1016/S0021-9258(18)31635-1) / J. Biol. Chem. (1994)
  28. Man, W.-J., Y. Li, C. D. Connor, and D. C. Wilton. 1995. The binding of propionyl-CoA and carboxymethyl-CoA to Escherichia coli citrate synthase. Biochim. Biophys. Acta1250:69-75. (10.1016/0167-4838(95)00044-U) / Biochim. Biophys. Acta (1995)
  29. Maruyama, K., and H. Kitamura. 1985. Mechanisms of growth inhibition by propionate and restoration of the growth by sodium bicarbonate or acetate in Rhodopseudomonas sphaeroidesS. J. Biochem. (Tokyo)98:819-824. (10.1093/oxfordjournals.jbchem.a135340) / S. J. Biochem. (Tokyo) (1985)
  30. 10.1046/j.1365-2958.1998.00797.x
  31. 10.1128/JB.182.4.905-910.2000
  32. Parker, J. D., P. S. Rabinovitch, and G. C. Burmer. 1991. Targeted gene walking polymerase chain reaction. Nucleic Acids Res.19:3055-3060. (10.1093/nar/19.11.3055) / Nucleic Acids Res. (1991)
  33. 10.1128/JB.183.8.2463-2475.2001
  34. 10.1128/jb.177.19.5434-5439.1995
  35. Sambrook J. E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual second ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
  36. Schmieger, H., and H. Bakhaus. 1973. The origin of DNA in transducing particles of P22 mutants with increased transduction frequencies (HT-mutants). Mol. Gen. Genet.120:181-190. (10.1007/BF00267246) / Mol. Gen. Genet. (1973)
  37. Starai, V. J., I. Celic, R. N. Cole, J. D. Boeke, and J. C. Escalante-Semerena. 2002. Sir2-dependent activation of acetyl-coenzyme A synthetase by deacetylation of an active lysine. Science298:2390-2392. (10.1126/science.1077650) / Science (2002)
  38. Starai V. J. H. Takahashi J. D. Boeke and J. C. Escalante-Semerena. 2003. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae . Genetics 163 : 545-555. (10.1093/genetics/163.2.545)
  39. Textor, S., V. F. Wendisch, A. A. De Graaf, U. Müller, M. I. Linder, D. Linder, and W. Buckel. 1997. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch. Microbiol.168:428-436. (10.1007/s002030050518) / Arch. Microbiol. (1997)
  40. Tsai, S. P., R. J. Hartin, and J. Ryu. 1989. Transformation in restriction-deficient Salmonella typhimurium LT2. J. Gen. Microbiol.135:2561-2567. / J. Gen. Microbiol. (1989)
  41. 10.1128/jb.178.23.7016-7019.1996
  42. 10.1128/JB.180.24.6511-6518.1998
  43. Watanabe, T., Y. Ogata, R. K. Chan, and D. Botstein. 1972. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. I. Transduction of R factor 222 by phage P22. Virology50:874-882. (10.1016/0042-6822(72)90441-2) / Virology (1972)
  44. Way, J. C., M. A. Davis, D. Morisato, D. E. Roberts, and N. Kleckner. 1984. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene32:369-379. (10.1016/0378-1119(84)90012-X) / Gene (1984)
  45. 10.1128/JB.181.19.6092-6097.1999
Dates
Type When
Created 22 years, 4 months ago (April 16, 2003, 5:03 p.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 2:14 p.m.)
Indexed 3 months ago (May 27, 2025, 10:58 a.m.)
Issued 22 years, 3 months ago (May 1, 2003)
Published 22 years, 3 months ago (May 1, 2003)
Published Print 22 years, 3 months ago (May 1, 2003)
Funders 0

None

@article{Palacios_2003, title={Propionyl Coenzyme A Is a Common Intermediate in the 1,2-Propanediol and Propionate Catabolic Pathways Needed for Expression of the prpBCDE Operon during Growth of Salmonella enterica on 1,2-Propanediol}, volume={185}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.185.9.2802-2810.2003}, DOI={10.1128/jb.185.9.2802-2810.2003}, number={9}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Palacios, Sergio and Starai, Vincent J. and Escalante-Semerena, Jorge C.}, year={2003}, month=may, pages={2802–2810} }