Abstract
ABSTRACT The studies reported here identify propionyl coenzyme A (propionyl-CoA) as the common intermediate in the 1,2-propanediol and propionate catabolic pathways of Salmonella enterica serovar Typhimurium LT2. Growth on 1,2-propanediol as a carbon and energy source led to the formation and excretion of propionate, whose activation to propionyl-CoA relied on the activities of the propionate kinase (PduW)/phosphotransacetylase (Pta) enzyme system and the CobB sirtuin-controlled acetyl-CoA and propionyl-CoA (Acs, PrpE) synthetases. The different affinities of these systems for propionate ensure sufficient synthesis of propionyl-CoA to support wild-type growth of S. enterica under low or high concentrations of propionate in the environment. These redundant systems of propionyl-CoA synthesis are needed because the prpE gene encoding the propionyl-CoA synthetase enzyme is part of the prpBCDE operon under the control of the PrpR regulatory protein, which needs 2-methylcitrate as a coactivator. Because the synthesis of 2-methylcitrate by PrpC (i.e., the 2-methylcitrate synthase enzyme) requires propionyl-CoA as a substrate, the level of propionyl-CoA needs to be raised by the Acs or PduW-Pta system before 2-methylcitrate can be synthesized and prpBCDE transcription can be activated.
Bibliography
Palacios, S., Starai, V. J., & Escalante-Semerena, J. C. (2003). Propionyl Coenzyme A Is a Common Intermediate in the 1,2-Propanediol and Propionate Catabolic Pathways Needed for Expression of the prpBCDE Operon during Growth of Salmonella enterica on 1,2-Propanediol. Journal of Bacteriology, 185(9), 2802â2810.
References
45
Referenced
63
10.1128/AEM.32.6.781-791.1976
10.1128/jb.96.1.215-220.1968
10.1128/JB.181.19.5967-5975.1999
10.1128/jb.179.21.6633-6639.1997
10.1128/AEM.68.1.271-279.2002
-
Brämer, C. O., and A. Steinbüchel. 2001. The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism. Microbiology147:2203-2214.
(
10.1099/00221287-147-8-2203
) / Microbiology (2001) -
Brock, M., R. Fischer, D. Linder, and W. Buckel. 2000. Methylcitrate synthase from Aspergillus nidulans: implications for propionate as an antifungal agent. Mol. Microbiol.35:961-973.
(
10.1046/j.1365-2958.2000.01737.x
) / Mol. Microbiol. (2000) -
Caetano-Annoles, G. 1993. Amplifying DNA with arbitrary oligonucleotide primers. PCR Methods Appl.3:85-92.
(
10.1101/gr.3.2.85
) / PCR Methods Appl. (1993) 10.1128/jb.158.2.488-495.1984
-
Chan, R. K., D. Botstein, T. Watanabe, and Y. Ogata. 1972. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high transducing lysate. Virology50:883-898.
(
10.1016/0042-6822(72)90442-4
) / Virology (1972) 10.1128/JB.184.10.2728-2739.2002
-
Cooper, R. A. 1984. Metabolism of methylglyoxal in microorganisms. Annu. Rev. Microbiol.38:49-68.
(
10.1146/annurev.mi.38.100184.000405
) / Annu. Rev. Microbiol. (1984) - Davis R. W. D. Botstein and J. R. Roth. 1980. A manual for genetic engineering: advanced bacterial genetics. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
- Dawson R. M. C. D. C. Elliott W. H. Elliott and K. M. Jones. 1986. Data for biochemical research third edition. Oxford University Press Oxford United Kingdom.
-
Gerike, U., D. W. Hough, N. J. Russell, M. L. Dyall-Smith, and M. J. Danson. 1998. Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. Microbiology144:929-935.
(
10.1099/00221287-144-4-929
) / Microbiology (1998) -
Gulick V. J. Starai A. R. Horswill K. M. Homick and J. C. Escalante-Semerena. 2003. Structure of acetylation-controlled acetyl-CoA synthetase bound to coenzyme A. Biochemistry 42 : 2866-2873.
(
10.1021/bi0271603
) -
Gutheil, W. G., B. Holmquist, and B. L. Vallee. 1992. Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry31:475-481.
(
10.1021/bi00117a025
) / Biochemistry (1992) 10.1128/jb.177.14.4121-4130.1995
-
Hesslinger, C., S. A. Fairhurst, and G. Sawers. 1998. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades l-threonine to propionate. Mol. Microbiol.27:477-492.
(
10.1046/j.1365-2958.1998.00696.x
) / Mol. Microbiol. (1998) -
Horswill, A. R., A. R. Dudding, and J. C. Escalante-Semerena. 2001. Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J. Biol. Chem.276:19094-19101.
(
10.1074/jbc.M100244200
) / J. Biol. Chem. (2001) -
Horswill, A. R., and J. C. Escalante-Semerena. 2002. Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis. Biochemistry41:2379-2387.
(
10.1021/bi015647q
) / Biochemistry (2002) -
Horswill, A. R., and J. C. Escalante-Semerena. 2001. In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry40:4703-4713.
(
10.1021/bi015503b
) / Biochemistry (2001) 10.1128/jb.179.3.928-940.1997
-
Horswill, A. R., and J. C. Escalante-Semerena. 1999. The prpE gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthetase. Microbiology145:1381-1388.
(
10.1099/13500872-145-6-1381
) / Microbiology (1999) 10.1128/JB.181.18.5615-5623.1999
10.1128/JB.183.5.1577-1584.2001
-
Lo, T. W. C., M. E. Westwood, A. C. McLellan, T. Selwood, and P. J. Thornalley. 1994. Binding and modification of proteins by methylglyoxal under physiological conditions. J. Biol. Chem.269:32299-32305.
(
10.1016/S0021-9258(18)31635-1
) / J. Biol. Chem. (1994) -
Man, W.-J., Y. Li, C. D. Connor, and D. C. Wilton. 1995. The binding of propionyl-CoA and carboxymethyl-CoA to Escherichia coli citrate synthase. Biochim. Biophys. Acta1250:69-75.
(
10.1016/0167-4838(95)00044-U
) / Biochim. Biophys. Acta (1995) -
Maruyama, K., and H. Kitamura. 1985. Mechanisms of growth inhibition by propionate and restoration of the growth by sodium bicarbonate or acetate in Rhodopseudomonas sphaeroidesS. J. Biochem. (Tokyo)98:819-824.
(
10.1093/oxfordjournals.jbchem.a135340
) / S. J. Biochem. (Tokyo) (1985) 10.1046/j.1365-2958.1998.00797.x
10.1128/JB.182.4.905-910.2000
-
Parker, J. D., P. S. Rabinovitch, and G. C. Burmer. 1991. Targeted gene walking polymerase chain reaction. Nucleic Acids Res.19:3055-3060.
(
10.1093/nar/19.11.3055
) / Nucleic Acids Res. (1991) 10.1128/JB.183.8.2463-2475.2001
10.1128/jb.177.19.5434-5439.1995
- Sambrook J. E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual second ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
-
Schmieger, H., and H. Bakhaus. 1973. The origin of DNA in transducing particles of P22 mutants with increased transduction frequencies (HT-mutants). Mol. Gen. Genet.120:181-190.
(
10.1007/BF00267246
) / Mol. Gen. Genet. (1973) -
Starai, V. J., I. Celic, R. N. Cole, J. D. Boeke, and J. C. Escalante-Semerena. 2002. Sir2-dependent activation of acetyl-coenzyme A synthetase by deacetylation of an active lysine. Science298:2390-2392.
(
10.1126/science.1077650
) / Science (2002) -
Starai V. J. H. Takahashi J. D. Boeke and J. C. Escalante-Semerena. 2003. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae . Genetics 163 : 545-555.
(
10.1093/genetics/163.2.545
) -
Textor, S., V. F. Wendisch, A. A. De Graaf, U. Müller, M. I. Linder, D. Linder, and W. Buckel. 1997. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch. Microbiol.168:428-436.
(
10.1007/s002030050518
) / Arch. Microbiol. (1997) - Tsai, S. P., R. J. Hartin, and J. Ryu. 1989. Transformation in restriction-deficient Salmonella typhimurium LT2. J. Gen. Microbiol.135:2561-2567. / J. Gen. Microbiol. (1989)
10.1128/jb.178.23.7016-7019.1996
10.1128/JB.180.24.6511-6518.1998
-
Watanabe, T., Y. Ogata, R. K. Chan, and D. Botstein. 1972. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. I. Transduction of R factor 222 by phage P22. Virology50:874-882.
(
10.1016/0042-6822(72)90441-2
) / Virology (1972) -
Way, J. C., M. A. Davis, D. Morisato, D. E. Roberts, and N. Kleckner. 1984. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene32:369-379.
(
10.1016/0378-1119(84)90012-X
) / Gene (1984) 10.1128/JB.181.19.6092-6097.1999
Dates
Type | When |
---|---|
Created | 22 years, 4 months ago (April 16, 2003, 5:03 p.m.) |
Deposited | 4 years, 1 month ago (July 29, 2021, 2:14 p.m.) |
Indexed | 3 months ago (May 27, 2025, 10:58 a.m.) |
Issued | 22 years, 3 months ago (May 1, 2003) |
Published | 22 years, 3 months ago (May 1, 2003) |
Published Print | 22 years, 3 months ago (May 1, 2003) |
@article{Palacios_2003, title={Propionyl Coenzyme A Is a Common Intermediate in the 1,2-Propanediol and Propionate Catabolic Pathways Needed for Expression of the prpBCDE Operon during Growth of Salmonella enterica on 1,2-Propanediol}, volume={185}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.185.9.2802-2810.2003}, DOI={10.1128/jb.185.9.2802-2810.2003}, number={9}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Palacios, Sergio and Starai, Vincent J. and Escalante-Semerena, Jorge C.}, year={2003}, month=may, pages={2802–2810} }