Abstract
ABSTRACT Superoxide damages dehydratases that contain catalytic [4Fe-4S] 2+ clusters. Aconitases are members of that enzyme family, and previous work showed that most aconitase activity is lost when Escherichia coli is exposed to superoxide stress. More recently it was determined that E. coli synthesizes at least two isozymes of aconitase, AcnA and AcnB. Synthesis of AcnA, the less-abundant enzyme, is positively controlled by SoxS, a protein that is activated in the presence of superoxide-generating chemicals. We have determined that this arrangement exists because AcnA is resistant to superoxide in vivo. Surprisingly, purified AcnA is extremely sensitive to superoxide and other chemical oxidants unless it is combined with an uncharacterized factor that is present in cell extracts. In contrast, AcnB is highly sensitive to a variety of chemical oxidants in vivo, in extracts, and in its purified form. Thus, the induction of AcnA during oxidative stress provides a mechanism to circumvent a block in the tricarboxylic acid cycle. AcnA appears to be as catalytically competent as AcnB, so the retention of the latter as the primary housekeeping enzyme must provide some other advantage. We observed that the [4Fe-4S] cluster of AcnB is in dynamic equilibrium with the surrounding iron pool, so that AcnB is rapidly demetallated when intracellular iron pools drop. AcnA and other dehydratases do not show this trait. Demetallated AcnB is known to bind its cognate mRNA. The absence of AcnB activity also causes the accumulation and excretion of citrate, an iron chelator for which E. coli synthesizes a transport system. Thus, AcnB may be retained as the primary aconitase because the lability of its exposed cluster allows E. coli to sense and respond to iron depletion.
References
48
Referenced
192
-
Alen, C., and A. L. Sonenshein. 1999. Bacillus subtilis aconitase is an RNA-binding protein. Proc. Natl. Acad. Sci. USA96:10412-10417.
(
10.1073/pnas.96.18.10412
) / Proc. Natl. Acad. Sci. USA (1999) -
Beauchamp, C., and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem.44:276-287.
(
10.1016/0003-2697(71)90370-8
) / Anal. Biochem. (1971) -
Bennett, B., M. J. Gruer, J. R. Guest, and A. J. Thomson. 1995. Spectroscopic characterisation of an aconitase (AcnA) of Escherichia coli. Eur. J. Biochem.233:317-326.
(
10.1111/j.1432-1033.1995.317_1.x
) / Eur. J. Biochem. (1995) -
Blank, L., J. Green, and J. R. Guest. 2002. AcnC of Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates. Microbiology148:133-146.
(
10.1099/00221287-148-1-133
) / Microbiology (2002) -
Carlioz, A., and D. Touati. 1986. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J.5:623-630.
(
10.1002/j.1460-2075.1986.tb04256.x
) / EMBO J. (1986) -
Chan, E., and B. Weiss. 1987. Endonuclease IV of Escherichia coli is induced by paraquat. Proc. Natl. Acad. Sci. USA84:3189-3193.
(
10.1073/pnas.84.10.3189
) / Proc. Natl. Acad. Sci. USA (1987) -
Clarke, T. E., L. W. Tari, and H. J. Vogel. 2001. Structural biology of bacterial iron uptake systems. Curr. Top. Med. Chem.1:7-30.
(
10.2174/1568026013395623
) / Curr. Top. Med. Chem. (2001) 10.1128/jb.179.23.7351-7359.1997
-
Eisenstark, A., M. J. Calcutt, M. Becker-Hapak, and A. Ivanova. 1996. Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Radic. Biol. Med.21:975-993.
(
10.1016/S0891-5849(96)00154-2
) / Free Radic. Biol. Med. (1996) -
Farr, S. B., R. D'Ari, and D. Touati. 1986. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc. Natl. Acad. Sci. USA83:8268-8272.
(
10.1073/pnas.83.21.8268
) / Proc. Natl. Acad. Sci. USA (1986) -
Ferguson, A. D., R. Chakraborty, B. S. Smith, L. Esser, D. van der Helm, and J. Deisenhofer. 2002. Structural basis of gating by the outer membrane transporter FecA. Science295:1715-1719.
(
10.1126/science.1067313
) / Science (2002) -
Flint, D. H., and R. M. Allen. 1996. Iron-sulfur proteins with nonredox functions. Chem. Rev.96:2315-2334.
(
10.1021/cr950041r
) / Chem. Rev. (1996) -
Flint, D. H., M. H. Emptage, and J. R. Guest. 1992. Fumarase A from Escherichia coli: purification and characterization as an iron-sulfur cluster containing enzyme. Biochemistry31:10331-10337.
(
10.1021/bi00157a022
) / Biochemistry (1992) -
Flint, D. H., J. F. Tuminello, and M. H. Emptage. 1993. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem.268:22369-22376.
(
10.1016/S0021-9258(18)41538-4
) / J. Biol. Chem. (1993) -
Fraenkel, D. G., and B. L. Horecker. 1964. Pathways of d-glucose metabolism in Salmonella typhimurium: a study of a mutant lacking phophoglucose isomerase. J. Biol. Chem.239:2765-2771.
(
10.1016/S0021-9258(18)93812-3
) / J. Biol. Chem. (1964) -
Gardner, P. R., G. Constantino, C. Szabo, and A. L. Salzman. 1997. Nitric oxide sensitivity of aconitases. J. Biol. Chem.272:25071-25076.
(
10.1074/jbc.272.40.25071
) / J. Biol. Chem. (1997) -
Gardner, P. R., and I. Fridovich. 1991. Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J. Biol. Chem.266:1478-1483.
(
10.1016/S0021-9258(18)52319-X
) / J. Biol. Chem. (1991) -
Gardner, P. R., and I. Fridovich. 1991. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem.266:19328-19333.
(
10.1016/S0021-9258(18)55001-8
) / J. Biol. Chem. (1991) -
Gardner, P. R., and I. Fridovich. 1992. Inactivation-reactivation of aconitase in Escherichia coli: a sensitive measure of superoxide radical. J. Biol. Chem.267:8757-8763.
(
10.1016/S0021-9258(19)50343-X
) / J. Biol. Chem. (1992) -
Gardner, P. R., I. Raineri, L. B. Epstein, and C. W. White. 1995. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem.270:13399-13405.
(
10.1074/jbc.270.22.13399
) / J. Biol. Chem. (1995) 10.1128/JB.180.6.1402-1410.1998
-
Gralnick, J., and D. Downs. 2001. Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica. Proc. Natl. Acad. Sci. USA98:8030-8035.
(
10.1073/pnas.151243198
) / Proc. Natl. Acad. Sci. USA (2001) -
Greenberg, J. T., P. Monach, J. H. Chou, P. D. Josephy, and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in E.coli. Proc. Natl. Acad. Sci. USA87:6181-6185.
(
10.1073/pnas.87.16.6181
) / Proc. Natl. Acad. Sci. USA (1990) -
Gruer, M. J., and J. R. Guest. 1994. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. Microbiology140:2531-2541.
(
10.1099/00221287-140-10-2531
) / Microbiology (1994) -
Hassan, H. M., and I. Fridovich. 1977. Regulation of the synthesis of superoxide dismutase in Escherichia coli: induction by methyl viologen. J. Biol. Chem.252:7667-7672.
(
10.1016/S0021-9258(17)41019-2
) / J. Biol. Chem. (1977) -
Hausladen, A., and I. Fridovich. 1994. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem.269:29405-29408.
(
10.1016/S0021-9258(18)43893-8
) / J. Biol. Chem. (1994) -
Imlay, J. A., and I. Fridovich. 1991. Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem.266:6957-6965.
(
10.1016/S0021-9258(20)89596-9
) / J. Biol. Chem. (1991) -
Jordan, P. A., Y. Tang, A. J. Bradbury, A. J. Thomson, and J. R. Guest. 1999. Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB). Biochem. J.344:739-746.
(
10.1042/bj3440739
) / Biochem. J. (1999) -
Kennedy, M. C., C. D. Stout, and H. Beinert. 1996. Aconitase as Fe-S protein, enzyme, and iron regulatory protein. Chem. Rev.96:2335-2374.
(
10.1021/cr950040z
) / Chem. Rev. (1996) 10.1128/jb.177.23.6782-6790.1995
-
Keyer, K., and J. A. Imlay. 1996. Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. USA93:13635-13640.
(
10.1073/pnas.93.24.13635
) / Proc. Natl. Acad. Sci. USA (1996) -
Keyer, K., and J. A. Imlay. 1997. Inactivation of dehydratase [4Fe-4S] clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite. J. Biol. Chem.272:27652-27659.
(
10.1074/jbc.272.44.27652
) / J. Biol. Chem. (1997) -
Klausner, R. D., and T. A. Rouault. 1993. A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol. Cell. Biol.4:1-5.
(
10.1091/mbc.4.1.1
) / Mol. Cell. Biol. (1993) -
Kuo, C. F., T. Mashino, and I. Fridovich. 1987. α,β-dihydroxyisovalerate dehydratase: a superoxide-sensitive enzyme. J. Biol. Chem.262:4724-4727.
(
10.1016/S0021-9258(18)61255-4
) / J. Biol. Chem. (1987) -
Liochev, S. I., and I. Fridovich. 1992. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc. Natl. Acad. Sci. USA89:5892-5896.
(
10.1073/pnas.89.13.5892
) / Proc. Natl. Acad. Sci. USA (1992) -
Liochev, S. I., and I. Fridovich. 1994. The role of superoxide in the production of hydroxyl radical: in vitro and in vivo. Free Radic. Biol. Med.16:29-33.
(
10.1016/0891-5849(94)90239-9
) / Free Radic. Biol. Med. (1994) 10.1128/jb.157.2.622-626.1984
-
Longo, V. D., L.-L. Liou, J. S. Valentine, and E. B. Gralla. 1999. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch. Biochem. Biophys.365:131-142.
(
10.1006/abbi.1999.1158
) / Arch. Biochem. Biophys. (1999) 10.1128/JB.182.13.3854-3857.2000
10.1128/jb.145.2.1110-1111.1981
-
Messner, K. R., and J. A. Imlay. 1999. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem.274:10119-10128.
(
10.1074/jbc.274.15.10119
) / J. Biol. Chem. (1999) - Miller J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
-
Misra, H. P., and I. Fridovich. 1977. Superoxide dismutase: “positive” spectrophotometric assays. Anal. Biochem.79:553-560.
(
10.1016/0003-2697(77)90429-8
) / Anal. Biochem. (1977) 10.1128/jb.179.18.5684-5692.1997
10.1128/JB.183.13.3890-3902.2001
-
Prodromou, C., M. J. Haynes, and J. R. Guest. 1991. The aconitase of Escherichia coli: purification of the enzyme and molecular cloning and map location of the gene (acn). J. Gen. Microbiol.137:2505-2515.
(
10.1099/00221287-137-11-2505
) / J. Gen. Microbiol. (1991) -
Tang, Y., and J. R. Guest. 1999. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichi coli aconitases. Microbiology145:3069-3079.
(
10.1099/00221287-145-11-3069
) / Microbiology (1999) 10.1128/jb.172.8.4197-4205.1990
Dates
Type | When |
---|---|
Created | 22 years, 8 months ago (Dec. 16, 2002, 5:44 p.m.) |
Deposited | 4 years, 1 month ago (July 29, 2021, 2:09 p.m.) |
Indexed | 1 day, 15 hours ago (Aug. 30, 2025, 1:05 p.m.) |
Issued | 22 years, 8 months ago (Jan. 1, 2003) |
Published | 22 years, 8 months ago (Jan. 1, 2003) |
Published Print | 22 years, 8 months ago (Jan. 1, 2003) |
@article{Varghese_2003, title={Contrasting Sensitivities of Escherichia coli Aconitases A and B to Oxidation and Iron Depletion}, volume={185}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.185.1.221-230.2003}, DOI={10.1128/jb.185.1.221-230.2003}, number={1}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Varghese, Shery and Tang, Yue and Imlay, James A.}, year={2003}, month=jan, pages={221–230} }