Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT The S-box transcription termination control system, first identified in Bacillus subtilis , is used for regulation of gene expression in response to methionine availability. The presence of the S-box motif provided the first indication that the ykrTS and ykrWXYZ genes could play a role in recycling of 5′-methylthioadenosine, a by-product of polyamine biosynthesis that can be converted to methionine. In this study we demonstrate a role for the ykrTS and ykrWXYZ gene products in this pathway.

Bibliography

Murphy, B. A., Grundy, F. J., & Henkin, T. M. (2002). Prediction of Gene Function in Methylthioadenosine Recycling from Regulatory Signals. Journal of Bacteriology, 184(8), 2314–2318.

Authors 3
  1. Brooke A. Murphy (first)
  2. Frank J. Grundy (additional)
  3. Tina M. Henkin (additional)
References 19 Referenced 36
  1. 10.1128/jb.81.5.741-746.1961
  2. Cornell, K. A., and M. K. Riscoe. 1998. Cloning and expression of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase: identification of the pfs gene product. Biochim. Biophys. Acta1396:8-14. (10.1016/S0167-4781(97)00169-3) / Biochim. Biophys. Acta (1998)
  3. Cornell, K. A., R. W. Winter, P. A. Tower, and M. K. Riscoe. 1996. Affinity purification of 5-methylthioribose kinase and 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Klebsiella pneumoniae.Biochem. J.317:285-290. (10.1042/bj3170285) / Biochem. J. (1996)
  4. Duerre, J. A. 1962. A hydrolytic nucleosidase acting on S-adenosylhomocysteine and on 5′-methylthioadenosine. J. Biol. Chem.237:3737-3741. (10.1016/S0021-9258(19)84517-9) / J. Biol. Chem. (1962)
  5. Ferro, A. J., A. Barrett, and S. K. Shapiro. 1978. 5-methylthioribose kinase. A new enzyme involved in the formation of methionine from 5-methylthioribose. J. Biol. Chem.253:6021-6025. (10.1016/S0021-9258(17)34573-8) / J. Biol. Chem. (1978)
  6. Furfine, E. S., and R. H. Abeles. 1988. Intermediates in the conversion of 5′-S-methylthioadenosine to methionine in Klebsiella pneumoniae.J. Biol. Chem.263:9598-9606. (10.1016/S0021-9258(19)81558-2) / J. Biol. Chem. (1988)
  7. Grundy, F. J., and T. M. Henkin. 1998. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol. Microbiol.30:737-749. (10.1046/j.1365-2958.1998.01105.x) / Mol. Microbiol. (1998)
  8. Grundy, F. J., and T. M. Henkin. 2002. Biosynthesis of serine, glycine, cysteine, and methionine, p. 245-254. In A. L. Sonenshein, R. M. Losick, and J. A. Hoch (ed.), Bacillus subtilis and its relatives: from genes to cells . American Society for Microbiology, Washington, D.C. / Bacillus subtilis and its relatives: from genes to cells . American Society for Microbiology (2002)
  9. Hanson, T. E., and F. R. Tabita. 2001. A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc. Natl. Acad. Sci. USA98:4397-4402. (10.1073/pnas.081610398) / Proc. Natl. Acad. Sci. USA (2001)
  10. Itaya, M., K. Kondo, and T. Tanaka. 1989. A neomycin resistance gene cassette selectable in a single copy in the Bacillus subtilis chromosome. Nucleic Acids Res.17:4410. (10.1093/nar/17.11.4410) / Nucleic Acids Res. (1989)
  11. Kyrpides, N. C., and C. R. Woese. 1998. Archael translation revisited: the initiation factor 2 and eukaryotic initiation factor 2B α−β−γ families. Proc. Natl. Acad. Sci. USA95:3726-3730. (10.1073/pnas.95.7.3726) / Proc. Natl. Acad. Sci. USA (1998)
  12. Miller J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
  13. Schlenk, F., C. R. Zydek-Cwick, and J. L. Dainko. 1973. 5′-Methylthioadenosine and related compounds as precursors of S-adenosylmethionine in yeast. Biochim. Biophys. Acta320:357-362. (10.1016/0304-4165(73)90316-4) / Biochim. Biophys. Acta (1973)
  14. Schroeder, H. R., C. J. Barnes, R. C. Bohinski, and M. F. Mallette. 1973. Biological production of 5-methylthioribose. Can. J. Microbiol.19:1347-1354. (10.1139/m73-217) / Can. J. Microbiol. (1973)
  15. Sekowska, A., P. Bertin, and A. Danchin. 1998. Characterization of polyamine synthesis in Bacillus subtilis 168. Mol. Microbiol.29:851-858. (10.1046/j.1365-2958.1998.00979.x) / Mol. Microbiol. (1998)
  16. Sekowska, A., and A. Danchin. 1999. Identification of yrrU as the methylthioadenosine nucleosidase gene in Bacillus subtilis.DNA Res.6:255-264. (10.1093/dnares/6.5.255) / DNA Res. (1999)
  17. Sekowska, A., H. Kung, and A. Danchin. 2000. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J. Mol. Microbiol. Biotechnol.2:145-177. / J. Mol. Microbiol. Biotechnol. (2000)
  18. Sekowska, A., L. Mulard, S. Krogh, J. K. S. Tse, and A. Danchin. 2001. MtnK, methylthioribose kinase, is a starvation-induced protein in Bacillus subtilis.BMC Microbiol.1:15. (10.1186/1471-2180-1-15) / BMC Microbiol. (2001)
  19. Tower, P. A., D. B. Alexander, L. L. Johnson, and M. K. Riscoe. 1993. Regulation of methylthioribose kinase by methionine in Klebsiella pneumoniae.J. Gen. Microbiol.139:1027-1031. (10.1099/00221287-139-5-1027) / J. Gen. Microbiol. (1993)
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:59 a.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 2:07 p.m.)
Indexed 3 weeks, 3 days ago (Aug. 6, 2025, 8:40 a.m.)
Issued 23 years, 4 months ago (April 15, 2002)
Published 23 years, 4 months ago (April 15, 2002)
Published Print 23 years, 4 months ago (April 15, 2002)
Funders 0

None

@article{Murphy_2002, title={Prediction of Gene Function in Methylthioadenosine Recycling from Regulatory Signals}, volume={184}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.184.8.2314-2318.2002}, DOI={10.1128/jb.184.8.2314-2318.2002}, number={8}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Murphy, Brooke A. and Grundy, Frank J. and Henkin, Tina M.}, year={2002}, month=apr, pages={2314–2318} }