Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACTMacrolides represent a clinically important class of antibiotics that block protein synthesis by interacting with the large ribosomal subunit. The macrolide binding site is composed primarily of rRNA. However, the mode of interaction of macrolides with rRNA and the exact location of the drug binding site have yet to be described. A new class of macrolide antibiotics, known as ketolides, show improved activity against organisms that have developed resistance to previously used macrolides. The biochemical reasons for increased potency of ketolides remain unknown. Here we describe the first mutation that confers resistance to ketolide antibiotics while leaving cells sensitive to other types of macrolides. A transition of U to C at position 2609 of 23S rRNA renderedE. colicells resistant to two different types of ketolides, telithromycin and ABT-773, but increased slightly the sensitivity to erythromycin, azithromycin, and a cladinose-containing derivative of telithromycin. Ribosomes isolated from the mutant cells had reduced affinity for ketolides, while their affinity for erythromycin was not diminished. Possible direct interaction of ketolides with position 2609 in 23S rRNA was further confirmed by RNA footprinting. The newly isolated ketolide-resistance mutation, as well as 23S rRNA positions shown previously to be involved in interaction with macrolide antibiotics, have been modeled in the crystallographic structure of the large ribosomal subunit. The location of the macrolide binding site in the nascent peptide exit tunnel at some distance from the peptidyl transferase center agrees with the proposed model of macrolide inhibitory action and explains the dominant nature of macrolide resistance mutations. Spatial separation of the rRNA residues involved in universal contacts with macrolides from those believed to participate in structure-specific interactions with ketolides provides the structural basis for the improved activity of the broader spectrum group of macrolide antibiotics.

Bibliography

Garza-Ramos, G., Xiong, L., Zhong, P., & Mankin, A. (2001). Binding Site of Macrolide Antibiotics on the Ribosome: New Resistance Mutation Identifies a Specific Interaction of Ketolides with rRNA. Journal of Bacteriology, 183(23), 6898–6907.

Authors 4
  1. Georgina Garza-Ramos (first)
  2. Liqun Xiong (additional)
  3. Ping Zhong (additional)
  4. Alexander Mankin (additional)
References 39 Referenced 102
  1. Arevalo M. A. Tejedor F. Polo F. Ballesta J. P. Protein components of the erythromycin binding site in bacterial ribosomes.J. Biol. Chem.26319885863 (10.1016/S0021-9258(19)57355-0) / J. Biol. Chem. / Protein components of the erythromycin binding site in bacterial ribosomes by Arevalo M. A. (1988)
  2. 10.1128/JB.181.12.3803-3809.1999
  3. Asai T. Zaporojets D. Squires C. Squires C. L. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria.Proc. Natl. Acad. Sci. USA96199919711976 (10.1073/pnas.96.5.1971) / Proc. Natl. Acad. Sci. USA / An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria by Asai T. (1999)
  4. Ban N. Nissen P. Hansen J. Moore P. B. Steitz T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution.Science2892000905920 (10.1126/science.289.5481.905) / Science / The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution by Ban N. (2000)
  5. Beauclerk A. A. Cundliffe E. Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides.J. Mol. Biol.1931987661671 (10.1016/0022-2836(87)90349-4) / J. Mol. Biol. / Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides by Beauclerk A. A. (1987)
  6. Belova L. Tenson T. Xiong L. McNicholas P. M. Mankin A. S. A novel site of antibiotic action in the ribosome: interaction of evernimicin with the large ribosomal subunit.Proc. Natl. Acad. Sci. USA98200137263731 (10.1073/pnas.071527498) / Proc. Natl. Acad. Sci. USA / A novel site of antibiotic action in the ribosome: interaction of evernimicin with the large ribosomal subunit by Belova L. (2001)
  7. Brosius J. Dull T. J. Sleeter D. D. Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli.J. Mol. Biol.1481981107127 (10.1016/0022-2836(81)90508-8) / J. Mol. Biol. / Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli by Brosius J. (1981)
  8. 10.1128/jb.176.20.6192-6198.1994
  9. Chittum H. S. Champney W. S. Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells.Curr. Microbiol.301995273279 (10.1007/BF00295501) / Curr. Microbiol. / Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells by Chittum H. S. (1995)
  10. Cundliffe E. Antibiotic inhibitors of ribosome function The molecular basis of antibiotic action. Gale E. F. Cundliffe E. Reynolds P. E. Richmond M. H. Waring M. J. 1981 402 545 John Wiley & Sons London United Kingdom
  11. Douthwaite S. Hansen L. H. Mauvais P. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA.Mol. Microbiol.362000183193 (10.1046/j.1365-2958.2000.01841.x) / Mol. Microbiol. / Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA by Douthwaite S. (2000)
  12. Gabashvili I. S. Gregory S. T. Valle M. Grassucci R. Worbs M. Wahl M. C. Dahlberg A. E. Frank J. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22.EMBO J.82001181188 / EMBO J. / The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22 by Gabashvili I. S. (2001)
  13. Gregory S. T. Dahlberg A. E. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA.J. Mol. Biol.2891999827834 (10.1006/jmbi.1999.2839) / J. Mol. Biol. / Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA by Gregory S. T. (1999)
  14. Gutell R. R. Comparative sequence analysis and the structure of 16S and 23S rRNA Ribosomal RNA: structure evolution processing and function in protein biosynthesis. Zimmermann R. A. Dahlberg A. E. 1996 111 128 CRC Press Boca Raton Fla
  15. Gutell R. R. Weiser B. Woese C. R. Noller H. F. Comparative anatomy of 16S-like ribosomal RNA.Prog. Nucleic Acid Res. Mol. Biol.321985155216 (10.1016/S0079-6603(08)60348-7) / Prog. Nucleic Acid Res. Mol. Biol. / Comparative anatomy of 16S-like ribosomal RNA by Gutell R. R. (1985)
  16. Hansen L. H. Mauvais P. Douthwaite S. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA.Mol. Microbiol.311999623632 (10.1046/j.1365-2958.1999.01202.x) / Mol. Microbiol. / The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA by Hansen L. H. (1999)
  17. Lai C. J. Weisblum B. Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus.Proc. Natl. Acad. Sci. USA681971856860 (10.1073/pnas.68.4.856) / Proc. Natl. Acad. Sci. USA / Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus by Lai C. J. (1971)
  18. 10.1128/AAC.21.5.811
  19. Merryman C. Noller H. F. Footprinting and modification-interference analysis of binding sites on RNA RNA:protein interactions a practical approach. Smith C. W. J. 1998 237 253 Oxford University Press Oxford United Kingdom (10.1093/oso/9780199636518.003.0010)
  20. Moazed D. Noller H. F. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA.Biochimie691987879884 (10.1016/0300-9084(87)90215-X) / Biochimie / Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA by Moazed D. (1987)
  21. 10.1128/AAC.45.7.2163-2168.2001
  22. 10.1126/science.289.5481.920
  23. Pardo D. Rosset R. Genetic studies of erythromycin resistant mutants of Escherichia coli.Mol. Gen. Genet.1351974257268 (10.1007/BF00268620) / Mol. Gen. Genet. / Genetic studies of erythromycin resistant mutants of Escherichia coli by Pardo D. (1974)
  24. Porse B. T. Leviev I. Mankin A. S. Garrett R. A. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre.J. Mol. Biol.2761998391404 (10.1006/jmbi.1997.1541) / J. Mol. Biol. / The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre by Porse B. T. (1998)
  25. Poulsen S. M. Kofoed C. Vester B. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.J. Mol. Biol.3042000471481 (10.1006/jmbi.2000.4229) / J. Mol. Biol. / Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin by Poulsen S. M. (2000)
  26. 10.1128/AAC.42.6.1509
  27. Sigmund C. D. Morgan E. A. Erythromycin resistance due to mutation in a ribosomal RNA operon of Escherichia coli.Proc. Natl. Acad. Sci. USA79198256025606 (10.1073/pnas.79.18.5602) / Proc. Natl. Acad. Sci. USA / Erythromycin resistance due to mutation in a ribosomal RNA operon of Escherichia coli by Sigmund C. D. (1982)
  28. 10.1016/S0021-9258(17)44232-3
  29. Sor F. Fukuhara H. Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast.Nucleic Acids Res.10198265716577 (10.1093/nar/10.21.6571) / Nucleic Acids Res. / Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast by Sor F. (1982)
  30. Stern S. Moazed D. Noller H. F. Analysis of RNA structure using chemical and enzymatic probing monitored by primer extension.Methods Enzymol.1641988481489 (10.1016/S0076-6879(88)64064-X) / Methods Enzymol. / Analysis of RNA structure using chemical and enzymatic probing monitored by primer extension by Stern S. (1988)
  31. 10.1128/AAC.44.8.2118-2125.2000
  32. Triman K. Becker E. Dammel C. Katz J. Mori H. Douthwaite S. Yapijakis C. Yoast S. Noller H. F. Isolation of temperature sensitive mutants of 16S rRNA in Escherichia coli.J. Mol. Biol.2091989645653 (10.1016/0022-2836(89)92000-7) / J. Mol. Biol. / Isolation of temperature sensitive mutants of 16S rRNA in Escherichia coli by Triman K. (1989)
  33. Vazquez D. The macrolide antibiotics Antibiotics III. Mechanism of action of antimicrobial and antitumor agents. Corcoran J. W. Hahn F. E. 1975 459 479 Springer-Verlag New York N.Y (10.1007/978-3-642-46304-4_30)
  34. 10.1128/AAC.45.1.1-12.2001
  35. 10.1128/AAC.39.3.577
  36. 10.1007/BF00333665
  37. Xiong L. Shah S. Mauvais P. Mankin A. S. A ketolide resistance mutation in domain II of 23S rRNA reveals proximity of hairpin 35 to the peptidyl transferase centre.Mol. Microbiol.311999633639 (10.1046/j.1365-2958.1999.01203.x) / Mol. Microbiol. / A ketolide resistance mutation in domain II of 23S rRNA reveals proximity of hairpin 35 to the peptidyl transferase centre by Xiong L. (1999)
  38. 10.1128/JB.182.19.5325-5331.2000
  39. 10.1016/0378-1119(85)90120-9
Dates
Type When
Created 23 years ago (July 27, 2002, 6:01 a.m.)
Deposited 1 year, 7 months ago (Jan. 5, 2024, 7:07 p.m.)
Indexed 1 month ago (July 16, 2025, 7:52 a.m.)
Issued 23 years, 8 months ago (Dec. 1, 2001)
Published 23 years, 8 months ago (Dec. 1, 2001)
Published Print 23 years, 8 months ago (Dec. 1, 2001)
Funders 0

None

@article{Garza_Ramos_2001, title={Binding Site of Macrolide Antibiotics on the Ribosome: New Resistance Mutation Identifies a Specific Interaction of Ketolides with rRNA}, volume={183}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.183.23.6898-6907.2001}, DOI={10.1128/jb.183.23.6898-6907.2001}, number={23}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Garza-Ramos, Georgina and Xiong, Liqun and Zhong, Ping and Mankin, Alexander}, year={2001}, month=dec, pages={6898–6907} }