Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT Enteropathogenic Escherichia coli (EPEC) produces the bundle-forming pilus (BFP), a type IV fimbria that has been implicated in virulence, autoaggregation, and localized adherence to epithelial cells. The bfpE gene is one of a cluster of bfp genes previously shown to encode functions that direct BFP biosynthesis. Here, we show that an EPEC strain carrying a nonpolar mutation in bfpE fails to autoaggregate, adhere to HEp-2 cells, or form BFP, thereby demonstrating that BfpE is required for BFP biogenesis. BfpE is a cytoplasmic membrane protein of the GspF family. To determine the membrane topology of BfpE, we fused bfpE derivatives containing 3′ truncations and/or internal deletions to alkaline phosphatase and/or β-galactosidase reporter genes, whose products are active only when localized to the periplasm or cytoplasm, respectively. In addition, we constructed BfpE sandwich fusions using a dual alkaline phosphatase/β-galactosidase reporter cassette and analyzed BfpE deletion derivatives by sucrose density flotation gradient fractionation. The data from these analyses support a topology in which BfpE contains four hydrophobic transmembrane (TM) segments, a large cytoplasmic segment at its N terminus, and a large periplasmic segment near its C terminus. This topology is dramatically different from that of OutF, another member of the GspF family, which has three TM segments and is predominantly cytoplasmic. These findings provide a structural basis for predicting protein-protein interactions required for assembly of the BFP biogenesis machinery.

Bibliography

Blank, T. E., & Donnenberg, M. S. (2001). Novel Topology of BfpE, a Cytoplasmic Membrane Protein Required for Type IV Fimbrial Biogenesis in Enteropathogenic Escherichia coli. Journal of Bacteriology, 183(15), 4435–4450.

Authors 2
  1. T. Eric Blank (first)
  2. Michael S. Donnenberg (additional)
References 75 Referenced 43
  1. 10.1006/jmbi.1998.2412
  2. 10.1016/0378-1119(88)90440-4
  3. 10.1128/IAI.66.1.122-131.1998
  4. 10.1128/JB.182.9.2498-2506.2000
  5. Baldini M. M. Kaper J. B. Levine M. M. Candy D. C. Moon H. W. Plasmid-mediated adhesion in enteropathogenic Escherichia coli.J. Pediatr. Gastroenterol. Nutr.21983534538 (10.1097/00005176-198302030-00023) / J. Pediatr. Gastroenterol. Nutr. / Plasmid-mediated adhesion in enteropathogenic Escherichia coli by Baldini M. M. (1983)
  6. 10.1126/science.280.5372.2114
  7. Boyd D. Beckwith J. Positively charged amino acid residues can act as topogenic determinants in membrane proteins.Proc. Natl. Acad. Sci. USA86198994469450 (10.1073/pnas.86.23.9446) / Proc. Natl. Acad. Sci. USA / Positively charged amino acid residues can act as topogenic determinants in membrane proteins by Boyd D. (1989)
  8. Calamia J. Manoil C. lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion.Proc. Natl. Acad. Sci. USA87199049374941 (10.1073/pnas.87.13.4937) / Proc. Natl. Acad. Sci. USA / lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion by Calamia J. (1990)
  9. 10.1046/j.1365-2958.1998.00726.x
  10. 10.1128/iai.50.2.420-424.1985
  11. 10.1128/JB.180.1.41-45.1998
  12. Claros M. G. Von Heijne G. TopPred II: an improved software for membrane protein structure predictions.Comput. Appl. Biosci.101994685686 / Comput. Appl. Biosci. / TopPred II: an improved software for membrane protein structure predictions by Claros M. G. (1994)
  13. Cserzö M. Wallin E. Simon I. Von Heijne G. Elofsson A. Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method.Protein Eng.101997673676 (10.1093/protein/10.6.673) / Protein Eng. / Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method by Cserzö M. (1997)
  14. 10.1046/j.1365-2958.1998.00884.x
  15. 10.1128/JB.181.15.4661-4664.1999
  16. 10.1128/iai.58.6.1565-1571.1990
  17. Donnenberg M. S. Girón J. A. Nataro J. P. Kaper J. B. A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence.Mol. Microbiol.6199234273437 (10.1111/j.1365-2958.1992.tb02210.x) / Mol. Microbiol. / A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence by Donnenberg M. S. (1992)
  18. 10.1128/IAI.59.12.4310-4317.1991
  19. Donnenberg M. S. Nataro J. P. Methods for studying adhesion of diarrheagenic Escherichia coli.Methods Enzymol.2531995324336 (10.1016/S0076-6879(95)53028-2) / Methods Enzymol. / Methods for studying adhesion of diarrheagenic Escherichia coli by Donnenberg M. S. (1995)
  20. 10.1128/jb.175.15.4670-4680.1993
  21. Donnenberg M. S. Zhang H.-Z. Stone K. D. Biogenesis of the bundle-forming pilus of enteropathogenic Escherichia coli: reconstitution of fimbriae in recombinant E. coli and role of DsbA in pilin stability—a review.Gene19219973338 (10.1016/S0378-1119(96)00826-8) / Gene / Biogenesis of the bundle-forming pilus of enteropathogenic Escherichia coli: reconstitution of fimbriae in recombinant E. coli and role of DsbA in pilin stability—a review by Donnenberg M. S. (1997)
  22. Ehrmann M. Boyd D. Beckwith J. Genetic analysis of membrane protein topology by a sandwich gene fusion approach.Proc. Natl. Acad. Sci. USA87199075747578 (10.1073/pnas.87.19.7574) / Proc. Natl. Acad. Sci. USA / Genetic analysis of membrane protein topology by a sandwich gene fusion approach by Ehrmann M. (1990)
  23. Georgiou C. D. Dueweke T. J. Gennis R. B. β-Galactosidase gene fusions as probes for the cytoplasmic regions of subunits I and II of the membrane-bound cytochrome d terminal oxidase from Escherichia coli.J. Biol. Chem.26319881313013137 (10.1016/S0021-9258(18)37681-6) / J. Biol. Chem. / β-Galactosidase gene fusions as probes for the cytoplasmic regions of subunits I and II of the membrane-bound cytochrome d terminal oxidase from Escherichia coli by Georgiou C. D. (1988)
  24. 10.1128/jb.179.11.3786-3789.1997
  25. Girón J. A. Ho A. S. Y. Schoolnik G. K. An inducible bundle-forming pilus of enteropathogenic Escherichia coli.Science2541991710713 (10.1126/science.1683004) / Science / An inducible bundle-forming pilus of enteropathogenic Escherichia coli by Girón J. A. (1991)
  26. 10.1128/iai.63.12.4949-4952.1995
  27. Gött P. Boos W. The transmembrane topology of the sn-glycerol-3-phosphate permease of Escherichia coli analysed by phoA and lacZ protein fusions.Mol. Microbiol.21988655663 (10.1111/j.1365-2958.1988.tb00074.x) / Mol. Microbiol. / The transmembrane topology of the sn-glycerol-3-phosphate permease of Escherichia coli analysed by phoA and lacZ protein fusions by Gött P. (1988)
  28. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing.Gene281984351359 (10.1016/0378-1119(84)90153-7) / Gene / Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing by Henikoff S. (1984)
  29. Hirokawa T. Boon-Chieng S. Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins.Bioinformatics141998378379 (10.1093/bioinformatics/14.4.378) / Bioinformatics / SOSUI: classification and secondary structure prediction system for membrane proteins by Hirokawa T. (1998)
  30. Hofmann K. Stoffel W. A database of membrane spanning protein segments.Biol. Chem. Hoppe-Seyler3741993166 / Biol. Chem. Hoppe-Seyler / A database of membrane spanning protein segments by Hofmann K. (1993)
  31. 10.1128/jb.177.19.5653-5660.1995
  32. Kaufman M. R. Shaw C. E. Jones I. D. Taylor R. K. Biogenesis and regulation of the Vibrio cholerae toxin-coregulated pilus: analogies to other virulence factor secretory systems.Gene12619934349 (10.1016/0378-1119(93)90588-T) / Gene / Biogenesis and regulation of the Vibrio cholerae toxin-coregulated pilus: analogies to other virulence factor secretory systems by Kaufman M. R. (1993)
  33. Knutton S. Shaw R. K. Anantha R. P. Donnenberg M. S. Zorgani A. A. The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal.Mol. Microbiol.331999499509 (10.1046/j.1365-2958.1999.01495.x) / Mol. Microbiol. / The type IV bundle-forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersal by Knutton S. (1999)
  34. 10.1128/iai.61.4.1371-1377.1993
  35. 10.1016/S0140-6736(78)90299-4
  36. Lindeberg M. Salmond G. P. C. Collmer A. Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of species-specific secretion of proteins via the type II pathway.Mol. Microbiol.201996175190 (10.1111/j.1365-2958.1996.tb02499.x) / Mol. Microbiol. / Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of species-specific secretion of proteins via the type II pathway by Lindeberg M. (1996)
  37. Manoil C. Analysis of membrane protein topology using alkaline phosphatase and β-galactosidase gene fusions.Methods Cell Biol.3419916175 (10.1016/S0091-679X(08)61676-3) / Methods Cell Biol. / Analysis of membrane protein topology using alkaline phosphatase and β-galactosidase gene fusions by Manoil C. (1991)
  38. Manoil C. Beckwith J. TnphoA: A transposon probe for protein export signals.Proc. Natl. Acad. Sci. USA82198581298133 (10.1073/pnas.82.23.8129) / Proc. Natl. Acad. Sci. USA / TnphoA: A transposon probe for protein export signals by Manoil C. (1985)
  39. 10.1126/science.3529391
  40. Martinez M. B. Taddei C. R. Ruiz-Tagle A. Trabulsi L. R. Girón J. A. Antibody response of children with enteropathogenic Escherichia coli infection to the bundle-forming pilus and locus of enterocyte effacement-encoded virulence determinants.J. Infect. Dis.1791999269274 (10.1086/314549) / J. Infect. Dis. / Antibody response of children with enteropathogenic Escherichia coli infection to the bundle-forming pilus and locus of enterocyte effacement-encoded virulence determinants by Martinez M. B. (1999)
  41. Ménard R. Sansonetti P. J. Parsot C. Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells.J. Bacteriol.175199358995906 (10.1128/JB.175.18.5899-5906.1993) / J. Bacteriol. / Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells by Ménard R. (1993)
  42. Miller J. H. A short course in bacterial genetics. 1992 Cold Spring Harbor Laboratory Press Plainview N.Y
  43. Nakai K. Kanehisa M. Expert system for predicting protein localization sites in gram-negative bacteria.Proteins11199195110 (10.1002/prot.340110203) / Proteins / Expert system for predicting protein localization sites in gram-negative bacteria by Nakai K. (1991)
  44. Nishiyama K. Suzuki T. Tokuda H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation.Cell8519967181 (10.1016/S0092-8674(00)81083-1) / Cell / Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation by Nishiyama K. (1996)
  45. 10.1128/jb.172.6.2911-2919.1990
  46. Popot J. L. Engelman D. M. Membrane protein folding and oligomerization: the two-stage model.Biochemistry29199040314037 (10.1021/bi00469a001) / Biochemistry / Membrane protein folding and oligomerization: the two-stage model by Popot J. L. (1990)
  47. Possot O. d'Enfert C. Reyss I. Pugsley A. P. Pullulanase secretion in Escherichia coli K-12 requires a cytoplasmic protein and a putative polytopic cytoplasmic membrane protein.Mol. Microbiol.6199295105 (10.1111/j.1365-2958.1992.tb00841.x) / Mol. Microbiol. / Pullulanase secretion in Escherichia coli K-12 requires a cytoplasmic protein and a putative polytopic cytoplasmic membrane protein by Possot O. (1992)
  48. Pugsley A. P. The complete general secretary pathway in gram-negative bacteria.Microbiol. Rev.57199350108 (10.1128/MR.57.1.50-108.1993) / Microbiol. Rev. / The complete general secretary pathway in gram-negative bacteria by Pugsley A. P. (1993)
  49. 10.1128/jb.178.22.6555-6563.1996
  50. Rost B. Casadio R. Fariselli P. Sander C. Transmembrane helices predicted at 95% accuracy.Protein Sci.41995521533 (10.1002/pro.5560040318) / Protein Sci. / Transmembrane helices predicted at 95% accuracy by Rost B. (1995)
  51. Rost B. Fariselli P. Casadio R. Topology prediction for helical transmembrane proteins at 86% accuracy.Protein Sci.5199617041718 (10.1002/pro.5560050824) / Protein Sci. / Topology prediction for helical transmembrane proteins at 86% accuracy by Rost B. (1996)
  52. Rothbaum R. McAdams A. J. Giannella R. Partin J. C. A clinicopathological study of enterocyte-adherent Escherichia coli: a cause of protracted diarrhea in infants.Gastroenterology831982441454 (10.1016/S0016-5085(82)80342-9) / Gastroenterology / A clinicopathological study of enterocyte-adherent Escherichia coli: a cause of protracted diarrhea in infants by Rothbaum R. (1982)
  53. Russel M. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems.J. Mol. Biol.2791998485499 (10.1006/jmbi.1998.1791) / J. Mol. Biol. / Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems by Russel M. (1998)
  54. Sambrook J. Fritsch E. F. Maniatis T. Molecular cloning: a laboratory manual 2nd ed. 1989 Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y
  55. 10.1128/jb.179.22.6994-7003.1997
  56. 10.1128/iai.45.2.534-536.1984
  57. Sohel I. Puente J. L. Murray W. J. Vuopio-Varkila J. Schoolnik G. K. Cloning and characterization of the bundle-forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes.Mol. Microbiol.71993563575 (10.1111/j.1365-2958.1993.tb01147.x) / Mol. Microbiol. / Cloning and characterization of the bundle-forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes by Sohel I. (1993)
  58. 10.1128/jb.178.9.2613-2628.1996
  59. Sonnhammer E. L. Von Heijne G. Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences.Proc. Int. Conf. Intell. Syst. Mol. Biol.61998175182 / Proc. Int. Conf. Intell. Syst. Mol. Biol. / A hidden Markov model for predicting transmembrane helices in protein sequences by Sonnhammer E. L. (1998)
  60. Stone K. D. Zhang H.-Z. Carlson L. K. Donnenberg M. S. A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for biogenesis of a type IV pilus.Mol. Microbiol.201996325337 (10.1111/j.1365-2958.1996.tb02620.x) / Mol. Microbiol. / A cluster of fourteen genes from enteropathogenic Escherichia coli is sufficient for biogenesis of a type IV pilus by Stone K. D. (1996)
  61. Thomas J. D. Reeves P. J. Salmond G. P. C. The general secretion pathway of Erwinia carotovora subsp. carotovora: analysis of the membrane topology of OutC and OutF.Microbiology1431997713720 (10.1099/00221287-143-3-713) / Microbiology / The general secretion pathway of Erwinia carotovora subsp. carotovora: analysis of the membrane topology of OutC and OutF by Thomas J. D. (1997)
  62. Tønjum T. Freitag N. E. Namork E. Koomey M. Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria.Mol. Microbiol.161995451464 (10.1111/j.1365-2958.1995.tb02410.x) / Mol. Microbiol. / Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria by Tønjum T. (1995)
  63. Traxler B. Beckwith J. Assembly of a hetero-oligomeric membrane protein complex.Proc. Natl. Acad. Sci. USA8919921085210856 (10.1073/pnas.89.22.10852) / Proc. Natl. Acad. Sci. USA / Assembly of a hetero-oligomeric membrane protein complex by Traxler B. (1992)
  64. Traxler B. Boyd D. Beckwith J. The topological analysis of integral cytoplasmic membrane proteins.J. Membr. Biol.1321993111 (10.1007/BF00233047) / J. Membr. Biol. / The topological analysis of integral cytoplasmic membrane proteins by Traxler B. (1993)
  65. Tusnády G. E. Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction.J. Mol. Biol.2831998489506 (10.1006/jmbi.1998.2107) / J. Mol. Biol. / Principles governing amino acid composition of integral membrane proteins: application to topology prediction by Tusnády G. E. (1998)
  66. 10.1128/MMBR.64.1.13-33.2000
  67. 10.1002/j.1460-2075.1986.tb04601.x
  68. Von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule.J. Mol. Biol.2251992487494 (10.1016/0022-2836(92)90934-C) / J. Mol. Biol. / Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule by Von Heijne G. (1992)
  69. Von Heijne G. Membrane proteins: from sequence to structure.Annu. Rev. Biophys. Biomol. Struct.231994167192 (10.1146/annurev.bb.23.060194.001123) / Annu. Rev. Biophys. Biomol. Struct. / Membrane proteins: from sequence to structure by Von Heijne G. (1994)
  70. Von Heijne G. Gavel Y. Topogenic signals in integral membrane proteins.Eur. J. Biochem.1741988671678 (10.1111/j.1432-1033.1988.tb14150.x) / Eur. J. Biochem. / Topogenic signals in integral membrane proteins by Von Heijne G. (1988)
  71. Wu S. S. Wu J. Kaiser D. The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced.Mol. Microbiol.231997109121 (10.1046/j.1365-2958.1997.1791550.x) / Mol. Microbiol. / The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced by Wu S. S. (1997)
  72. 10.1128/JB.181.7.2038-2043.1999
  73. Yun C. H. Van Doren S. R. Crofts A. R. Gennis R. B. The use of gene fusions to examine the membrane topology of the L-subunit of the photosynthetic reaction center and of the cytochrome b subunit of the bc1 complex from Rhodobacter sphaeroides.J. Biol. Chem.26619911096710973 (10.1016/S0021-9258(18)99114-3) / J. Biol. Chem. / The use of gene fusions to examine the membrane topology of the L-subunit of the photosynthetic reaction center and of the cytochrome b subunit of the bc 1 complex from Rhodobacter sphaeroides by Yun C. H. (1991)
  74. Zhang H.-Z. Donnenberg M. S. DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli.Mol. Microbiol.211996787797 (10.1046/j.1365-2958.1996.431403.x) / Mol. Microbiol. / DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli by Zhang H.-Z. (1996)
  75. 10.1128/jb.176.22.6885-6891.1994
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 6:01 a.m.)
Deposited 4 years ago (July 29, 2021, 1:59 p.m.)
Indexed 6 hours, 45 minutes ago (Aug. 29, 2025, 5:57 a.m.)
Issued 24 years ago (Aug. 1, 2001)
Published 24 years ago (Aug. 1, 2001)
Published Print 24 years ago (Aug. 1, 2001)
Funders 0

None

@article{Blank_2001, title={Novel Topology of BfpE, a Cytoplasmic Membrane Protein Required for Type IV Fimbrial Biogenesis in Enteropathogenic Escherichia coli}, volume={183}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.183.15.4435-4450.2001}, DOI={10.1128/jb.183.15.4435-4450.2001}, number={15}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Blank, T. Eric and Donnenberg, Michael S.}, year={2001}, month=aug, pages={4435–4450} }