Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT We have isolated several Saccharomyces cerevisiae mutants resistant to calcofluor that contain mutations in the PBS2 or HOG1 genes, which encode the mitogen-activated protein kinase (MAPK) and MAP kinases, respectively, of the high-osmolarity glycerol response (HOG) pathway. We report that blockage of either of the two activation branches of the pathway, namely, SHO1 and SLN1 , leads to partial resistance to calcofluor, while simultaneous disruption significantly increases resistance. However, chitin biosynthesis is independent of the HOG pathway. Calcofluor treatment also induces an increase in salt tolerance and glycerol accumulation, although no activation of the HOG pathway is detected. Our results indicate that the antifungal effect of calcofluor depends on its binding to cell wall chitin but also on the presence of a functional HOG pathway. Characterization of one of the mutants isolated, pbs2-14 , revealed that resistance to calcofluor and HOG-dependent osmoadaptation are two different physiological processes. Sensitivity to calcofluor depends on the constitutive functionality of the HOG pathway; when this is altered, the cells become calcofluor resistant but also show very low levels of basal salt tolerance. Characterization of some multicopy suppressors of the calcofluor resistance phenotype indicated that constitutive HOG functionality participates in the maintenance of cell wall architecture, a conclusion supported by the antagonism observed between the protein kinase and HOG signal transduction pathways.

Bibliography

García-Rodriguez, L. J., Durán, A., & Roncero, C. (2000). Calcofluor Antifungal Action Depends on Chitin and a Functional High-Osmolarity Glycerol Response (HOG) Pathway: Evidence for a Physiological Role of the Saccharomyces cerevisiae HOG Pathway under Noninducing Conditions. Journal of Bacteriology, 182(9), 2428–2437.

Authors 3
  1. L. J. García-Rodriguez (first)
  2. A. Durán (additional)
  3. C. Roncero (additional)
References 40 Referenced 82
  1. 10.1128/mcb.14.6.4135-4144.1994
  2. Ansell R. Granath K. Hohmann S. Thevelein J. M. Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and Gpd2 have distinct roles in osmoadaptation and redox regulation.EMBO J.16199721792187 (10.1093/emboj/16.9.2179) / EMBO J. / The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and Gpd2 have distinct roles in osmoadaptation and redox regulation by Ansell R. (1997)
  3. 10.1128/jb.170.10.4562-4568.1988
  4. Boguslawski G. Polazzi J. O. Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: similarity of the predicted polypeptide to protein kinases.Proc. Natl. Acad. Sci. USA84198758485852 (10.1073/pnas.84.16.5848) / Proc. Natl. Acad. Sci. USA / Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: similarity of the predicted polypeptide to protein kinases by Boguslawski G. (1987)
  5. 10.1126/science.7681220
  6. Carlson M. Botstein D. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase.Cell281982145154 (10.1016/0092-8674(82)90384-1) / Cell / Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase by Carlson M. (1982)
  7. Chuang J. S. Schekman R. W. Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p.J. Cell Biol.1351996597610 / J. Cell Biol. / Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p by Chuang J. S. (1996)
  8. 10.1128/mr.59.3.345-386.1995
  9. Cos T. Ford R. A. Trilla J. A. Duran A. Cabib E. Roncero C. Molecular analysis of Chs3p participation in chitin synthase III activity.Eur. J. Biochem.2561998419426 (10.1046/j.1432-1327.1998.2560419.x) / Eur. J. Biochem. / Molecular analysis of Chs3p participation in chitin synthase III activity by Cos T. (1998)
  10. Davenport K. R. Sohaskey M. Kamada Y. Levin D. E. Gustin M. C. A second osmosensing signal transduction pathway in yeast.J. Biol. Chem.27019953015730161 (10.1074/jbc.270.50.30157) / J. Biol. Chem. / A second osmosensing signal transduction pathway in yeast by Davenport K. R. (1995)
  11. 10.1128/MMBR.62.4.1264-1300.1998
  12. Homma K. Terui S. Minemura M. Qadota H. Anraku Y. Kanaho Y. Ohya Y. Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis.J. Biol. Chem.27319981577915786 (10.1074/jbc.273.25.15779) / J. Biol. Chem. / Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis by Homma K. (1998)
  13. Igual J. C. Johnson A. L. Johnston L. H. Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity.EMBO J.15199650015013 (10.1002/j.1460-2075.1996.tb00880.x) / EMBO J. / Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity by Igual J. C. (1996)
  14. Inoue Y. Tsujimoto Y. Kimura A. Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high glycerol mitogen-activated protein kinase pathway in osmotic stress response.J. Biol. Chem.273199829772983 (10.1074/jbc.273.5.2977) / J. Biol. Chem. / Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high glycerol mitogen-activated protein kinase pathway in osmotic stress response by Inoue Y. (1998)
  15. Jiang B. Ram A. F. Sheraton J. Klis F. M. Bussey H. Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription.Mol. Gen. Genet.2481995260269 (10.1007/BF02191592) / Mol. Gen. Genet. / Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription by Jiang B. (1995)
  16. Lai M. H. Silverman S. J. Gaughran J. P. Kirsch D. R. Multiple copies of PBS2, MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae.Yeast131997199213 (10.1002/(SICI)1097-0061(19970315)13:3<199::AID-YEA76>3.0.CO;2-Z) / Yeast / Multiple copies of PBS2, MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae by Lai M. H. (1997)
  17. Levin D. E. Bartlett-Heubusch E. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect.J. Cell Biol.116199212211229 (10.1083/jcb.116.5.1221) / J. Cell Biol. / Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect by Levin D. E. (1992)
  18. Longtine M. S. DeMarini D. J. Valencik M. L. Al-Awar O. S. Fares H. De Virgilio C. Pringle J. R. The septins: roles in cytokinesis and other processes.Curr. Opin. Cell Biol.61996106119 (10.1016/S0955-0674(96)80054-8) / Curr. Opin. Cell Biol. / The septins: roles in cytokinesis and other processes by Longtine M. S. (1996)
  19. 10.1093/genetics/147.2.435
  20. Mackenzie K. F. Blomberg A. Brown A. D. Water stress plating hypersensitivity of yeast.J. Gen. Microbiol.132198620532056 / J. Gen. Microbiol. / Water stress plating hypersensitivity of yeast by Mackenzie K. F. (1986)
  21. Maeda T. Wurgler-Murphy S. M. Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast.Nature3691994242245 (10.1038/369242a0) / Nature / A two-component system that regulates an osmosensing MAP kinase cascade in yeast by Maeda T. (1994)
  22. Maeda T. Takekawa M. Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor.Science2691995554558 (10.1126/science.7624781) / Science / Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor by Maeda T. (1995)
  23. Marini N. J. Meldrum E. Buehrer B. Hubberstey A. W. Stone D. E. Traynor-Kaplan A. Reed S. I. A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START.EMBO J.15199630403052 (10.1002/j.1460-2075.1996.tb00667.x) / EMBO J. / A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START by Marini N. J. (1996)
  24. Marquez J. A. Pascual-Ahuir A. Proft M. Serrano R. The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes.EMBO J.17199825432553 (10.1093/emboj/17.9.2543) / EMBO J. / The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes by Marquez J. A. (1998)
  25. 10.1128/MCB.19.11.7651
  26. Posas F. Saito H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK.Science276199717021705 (10.1126/science.276.5319.1702) / Science / Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK by Posas F. (1997)
  27. Ram A. F. J. Brekelmans S. S. C. Oehlen L. J. W. M. Klis F. M. Identification of two cell-cycle regulated genes affecting the b1,3-glucan content of cell walls in Saccharomyces cerevisiae.FEBS Lett.3581995165170 (10.1016/0014-5793(94)01418-Z) / FEBS Lett. / Identification of two cell-cycle regulated genes affecting the b1,3-glucan content of cell walls in Saccharomyces cerevisiae by Ram A. F. J. (1995)
  28. Reynolds T. B. Hopkins B. D. Lyons M. R. Graham T. R. The high osmolarity glycerol response (HOG) MAP kinase pathway controls localization of a yeast golgi glycosyltransferase.J. Cell Biol.1431998935946 (10.1083/jcb.143.4.935) / J. Cell Biol. / The high osmolarity glycerol response (HOG) MAP kinase pathway controls localization of a yeast golgi glycosyltransferase by Reynolds T. B. (1998)
  29. Roemer T. Paravicini G. Payton M. A. Bussey H. Characterization of the yeast (1→6)-beta-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly.J. Cell Biol.1271994567579 (10.1083/jcb.127.2.567) / J. Cell Biol. / Characterization of the yeast (1→6)-beta-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly by Roemer T. (1994)
  30. 10.1128/jb.163.3.1180-1185.1985
  31. 10.1128/jb.170.4.1945-1949.1988
  32. 10.1128/jb.170.4.1950-1954.1988
  33. Rose M. D. Winston F. Hieter P. Methods in yeast genetics: a laboratory course manual. 1990 Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y
  34. Sambrook J. Fritsch E. F. Maniatis T. Molecular cloning: a laboratory manual 2nd ed. 1989 Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y
  35. Schuller C. Brewster J. L. Alexander M. R. Gustin M. C. Ruis H. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.EMBO J.13199443824389 (10.1002/j.1460-2075.1994.tb06758.x) / EMBO J. / The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene by Schuller C. (1994)
  36. Shaw J. A. Mol P. C. Bowers B. Silverman S. J. Valdivieso M. H. Duran A. Cabib E. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle.J. Cell Biol.1141991111123 (10.1083/jcb.114.1.111) / J. Cell Biol. / The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle by Shaw J. A. (1991)
  37. Thompson E. A. Roeder S. G. Expression and DNA sequence of RED1, a gene required for meiosis I chromosome segregation in yeast.Mol. Gen. Genet.2181989293301 (10.1007/BF00331281) / Mol. Gen. Genet. / Expression and DNA sequence of RED1, a gene required for meiosis I chromosome segregation in yeast by Thompson E. A. (1989)
  38. Trilla J. A. Duran A. Roncero C. Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae.J. Cell Biol.145199911531163 (10.1083/jcb.145.6.1153) / J. Cell Biol. / Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae by Trilla J. A. (1999)
  39. Valdivieso M. H. Mol P. C. Shaw J. A. Cabib E. Duran A. CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae.J. Cell Biol.1141991101109 (10.1083/jcb.114.1.101) / J. Cell Biol. / CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae by Valdivieso M. H. (1991)
  40. 10.1128/MCB.15.10.5740
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:58 a.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 1:57 p.m.)
Indexed 1 year, 1 month ago (July 29, 2024, 1:14 a.m.)
Issued 25 years, 3 months ago (May 1, 2000)
Published 25 years, 3 months ago (May 1, 2000)
Published Print 25 years, 3 months ago (May 1, 2000)
Funders 0

None

@article{Garci_a_Rodriguez_2000, title={Calcofluor Antifungal Action Depends on Chitin and a Functional High-Osmolarity Glycerol Response (HOG) Pathway: Evidence for a Physiological Role of the Saccharomyces cerevisiae HOG Pathway under Noninducing Conditions}, volume={182}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.182.9.2428-2437.2000}, DOI={10.1128/jb.182.9.2428-2437.2000}, number={9}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={García-Rodriguez, L. J. and Durán, A. and Roncero, C.}, year={2000}, month=may, pages={2428–2437} }