Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT Evolution by natural selection occurs in cultures of Escherichia coli maintained under carbon starvation stress. Mutants of increased fitness express a growth advantage in stationary phase (GASP) phenotype, enabling them to grow and displace the parent as the majority population. The first GASP mutation was identified as a loss-of-function allele of rpoS , encoding the stationary-phase global regulator, ς S (M. M. Zambrano, D. A. Siegele, M. A. Almirón, A. Tormo, and R. Kolter, Science 259:1757–1760, 1993). We now report that a second global regulator, Lrp, can also play a role in stationary-phase competition. We found that a mutant that took over an aged culture of an rpoS strain had acquired a GASP mutation in lrp . This GASP allele, lrp-1141 , encodes a mutant protein lacking the critical glycine in the turn of the helix-turn-helix DNA-binding domain. The lrp-1141 allele behaves as a null mutation when in single copy and is dominant negative when overexpressed. Hence, the mutant protein appears to retain stability and the ability to dimerize but lacks DNA-binding activity. We also demonstrated that a lrp null allele generated by a transposon insertion has a fitness gain identical to that of the lrp-1141 allele, verifying that cells lacking Lrp activity have a competitive advantage during prolonged starvation. Finally, we tested by genetic analysis the hypothesis that the lrp-1141 GASP mutation confers a fitness gain by enhancing amino acid catabolism during carbon starvation. We found that while amino acid catabolism may play a role, it is not necessary for the lrp GASP phenotype, and hence the lrp GASP phenotype is due to more global physiological changes.

Bibliography

Zinser, E. R., & Kolter, R. (2000). Prolonged Stationary-Phase Incubation Selects for lrp Mutations in Escherichia coli K-12. Journal of Bacteriology, 182(15), 4361–4365.

Authors 2
  1. Erik R. Zinser (first)
  2. Roberto Kolter (additional)
References 44 Referenced 93
  1. 10.1128/jb.177.23.6791-6797.1995
  2. Ambartsoumian G. D'Ari R. Lin R. T. Newman E. B. Altered amino acid metabolism in lrp mutants of Escherichia coli K12 and their derivatives.Microbiology140199417371744 (10.1099/13500872-140-7-1737) / Microbiology / Altered amino acid metabolism in lrp mutants of Escherichia coli K12 and their derivatives by Ambartsoumian G. (1994)
  3. Beloin C. Ayora S. Exley R. Hirschbein L. Ogasawara N. Kasahara Y. Alonso J. C. Hegarat L. Characterization of an lrp-like (lrpC) gene from Bacillus subtilis.Mol. Gen. Genet.25619976371 (10.1007/s004380050546) / Mol. Gen. Genet. / Characterization of an lrp-like (lrpC) gene from Bacillus subtilis by Beloin C. (1997)
  4. 10.1016/S0021-9258(18)94115-3
  5. Caetano-Annoles G. Amplifying DNA with arbitrary oligonucleotide primers.PCR Methods Appl.319938592 (10.1101/gr.3.2.85) / PCR Methods Appl. / Amplifying DNA with arbitrary oligonucleotide primers by Caetano-Annoles G. (1993)
  6. 10.1128/mr.58.3.466-490.1994
  7. Charlier D. Roovers M. Thia-Toong T.-L. Durbecq V. Glansdorff N. Cloning and identification of the Sulfolobus solfataricus lrp gene encoding an archaeal homologue of the eubacterial leucine-responsive global transcriptional regulator Lrp.Gene20119976368 (10.1016/S0378-1119(97)00428-9) / Gene / Cloning and identification of the Sulfolobus solfataricus lrp gene encoding an archaeal homologue of the eubacterial leucine-responsive global transcriptional regulator Lrp by Charlier D. (1997)
  8. Connell N. Han Z. Moreno F. Kolter R. An E. coli promoter induced by the cessation of growth.Mol. Microbiol.11987195201 (10.1111/j.1365-2958.1987.tb00512.x) / Mol. Microbiol. / An E. coli promoter induced by the cessation of growth by Connell N. (1987)
  9. Cui Y. Midkiff M. A. Wang Q. Calvo J. M. The leucine-responsive regulatory protein (Lrp) from Escherichia coli.J. Biol. Chem.271199666116617 (10.1074/jbc.271.12.6611) / J. Biol. Chem. / The leucine-responsive regulatory protein (Lrp) from Escherichia coli by Cui Y. (1996)
  10. 10.1128/jb.175.22.7160-7169.1993
  11. Finkel S. E. Kolter R. Evolution of microbial diversity during prolonged starvation.Proc. Natl. Acad. Sci. USA96199940234027 (10.1073/pnas.96.7.4023) / Proc. Natl. Acad. Sci. USA / Evolution of microbial diversity during prolonged starvation by Finkel S. E. (1999)
  12. Finkel S. E. Zinser E. Gupta S. Kolter R. Life and death in stationary phase Molecular microbiology. Busby S. J. W. Thomas C. M. Brown N. L. 1997 3 16 Springer-Verlag Berlin Germany (10.1007/978-3-642-72071-0_1)
  13. Fix D. F. Burns P. A. Glickman B. W. DNA sequence analysis of spontaneous mutation in a PolA1 strain of Escherichia coli indicates sequence-specific effects.Mol. Gen. Genet.2071987267272 (10.1007/BF00331588) / Mol. Gen. Genet. / DNA sequence analysis of spontaneous mutation in a PolA1 strain of Escherichia coli indicates sequence-specific effects by Fix D. F. (1987)
  14. 10.1128/jb.177.6.1624-1626.1995
  15. Gupta S. Mutations that confer a competitive advantage during starvation. M.A. thesis. 1997 Harvard University Cambridge Mass
  16. Harrison S. C. Aggarwal A. K. DNA recognition by proteins with the helix-turn-helix motif.Annu. Rev. Biochem.591990933969 (10.1146/annurev.bi.59.070190.004441) / Annu. Rev. Biochem. / DNA recognition by proteins with the helix-turn-helix motif by Harrison S. C. (1990)
  17. Hochschild A. Irwin N. Ptashne M. Repressor structure and the mechanism of positive control.Cell321983319325 (10.1016/0092-8674(83)90451-8) / Cell / Repressor structure and the mechanism of positive control by Hochschild A. (1983)
  18. 10.1128/jb.118.1.53-58.1974
  19. Jankovic M. Kostic T. Savic D. J. DNA sequence analysis of spontaneous histidine mutations in a polA1 strain of Escherichia coli K12 suggests a specific role of the GTGG sequence.Mol. Gen. Genet.2231990481486 (10.1007/BF00264457) / Mol. Gen. Genet. / DNA sequence analysis of spontaneous histidine mutations in a polA1 strain of Escherichia coli K12 suggests a specific role of the GTGG sequence by Jankovic M. (1990)
  20. 10.1128/AEM.65.8.3582-3587.1999
  21. 10.1128/jb.179.5.1828-1831.1997
  22. Kleckner N. Transposon Tn 10 Mobile DNA. Berg D. E. Howe M. M. 1989 227 268 ASM Press Washington D.C.
  23. 10.1016/0076-6879(91)04009-D
  24. Kyrpides N. C. Ouzounis C. A. The eubacterial transcription activator Lrp is present in the archaeon Pyrococcus furiousus.Trends Biochem. Sci.201995140141 (10.1016/S0968-0004(00)88988-4) / Trends Biochem. Sci. / The eubacterial transcription activator Lrp is present in the archaeon Pyrococcus furiousus by Kyrpides N. C. (1995)
  25. 10.1128/jb.178.23.6930-6936.1996
  26. Lin R. D'Ari R. Newman E. B. The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of l-leucine-dependent metabolic operons.J. Bacteriol.172199045294535 (10.1128/jb.172.8.4529-4535.1990) / J. Bacteriol. / The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of l-leucine-dependent metabolic operons by Lin R. (1990)
  27. Martinez E. Bartolome B. De la Cruz F. pACYC184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids.Gene681988159162 (10.1016/0378-1119(88)90608-7) / Gene / pACYC184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids by Martinez E. (1988)
  28. 10.1128/jb.178.24.7234-7240.1996
  29. Miller J. H. A short course in bacterial genetics. 1992 Cold Spring Harbor Press Cold Spring Harbor N.Y
  30. Mondragón A. Subbiah S. Almo S. C. Drottar M. Harrison S. C. Structure of the amino-terminal domain of phage 434 repressor at 2.0 Å resolution.J. Mol. Biol.2051989189200 (10.1016/0022-2836(89)90375-6) / J. Mol. Biol. / Structure of the amino-terminal domain of phage 434 repressor at 2.0 Å resolution by Mondragón A. (1989)
  31. Morita R. Y. Bioavailability of energy and its relationship to growth and starvation survival in nature.Can. J. Microbiol.341988436441 (10.1139/m88-076) / Can. J. Microbiol. / Bioavailability of energy and its relationship to growth and starvation survival in nature by Morita R. Y. (1988)
  32. Morita R. Y. Bioavailability of energy and the starvation state Starvation in bacteria. Kjelleberg S. 1993 1 23 Plenum Press New York N.Y (10.1007/978-1-4899-2439-1_1)
  33. Newman E. B. Lin R. T. D'Ari R. The leucine/Lrp regulon Escherichia coli and Salmonella: cellular and molecular biology 2nd ed. Neidhardt F. C. Curtiss R. III Ingraham J. L. Lin E. C. C. Low K. B. Magasanik B. Reznikoff W. S. Riley M. Schaechter M. Umbarger H. E. 1996 1513 1525 ASM Press Washington D.C.
  34. 10.1128/jb.175.4.1110-1117.1993
  35. Siegele D. A. Kolter R. Isolation and characterization of an Escherichia coli mutant defective in resuming growth after starvation.Genes Dev.7199326292640 (10.1101/gad.7.12b.2629) / Genes Dev. / Isolation and characterization of an Escherichia coli mutant defective in resuming growth after starvation by Siegele D. A. (1993)
  36. 10.1128/mr.53.1.1-24.1989
  37. 10.1128/jb.171.9.5095-5102.1989
  38. 10.1128/iai.64.7.2808-2811.1996
  39. Wild J. Obrepalska B. Regulation of expression of the dadA gene encoding d-amino acid dehydrogenase in Escherichia coli: analysis of dadA-lac fusions and direction of dadA transcription.Mol. Gen. Genet.1861982405410 (10.1007/BF00729461) / Mol. Gen. Genet. / Regulation of expression of the dadA gene encoding d-amino acid dehydrogenase in Escherichia coli: analysis of dadA-lac fusions and direction of dadA transcription by Wild J. (1982)
  40. Willins D. A. Ryan C. W. Platko J. V. Calvo J. M. Characterization of Lrp, an Escherichia coli regulatory protein that mediates a global response to leucine.J. Biol. Chem.26619911076810774 (10.1016/S0021-9258(18)99084-8) / J. Biol. Chem. / Characterization of Lrp, an Escherichia coli regulatory protein that mediates a global response to leucine by Willins D. A. (1991)
  41. 10.1128/jb.175.17.5642-5647.1993
  42. Zambrano M. M. Kolter R. GASPing for life in stationary phase.Cell861996181184 (10.1016/S0092-8674(00)80089-6) / Cell / GASPing for life in stationary phase by Zambrano M. M. (1996)
  43. 10.1126/science.7681219
  44. 10.1128/JB.181.18.5800-5807.1999
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 6 a.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 1:54 p.m.)
Indexed 4 weeks, 1 day ago (Aug. 7, 2025, 4:50 p.m.)
Issued 25 years, 1 month ago (Aug. 1, 2000)
Published 25 years, 1 month ago (Aug. 1, 2000)
Published Print 25 years, 1 month ago (Aug. 1, 2000)
Funders 0

None

@article{Zinser_2000, title={Prolonged Stationary-Phase Incubation Selects for lrp Mutations in Escherichia coli K-12}, volume={182}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.182.15.4361-4365.2000}, DOI={10.1128/jb.182.15.4361-4365.2000}, number={15}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Zinser, Erik R. and Kolter, Roberto}, year={2000}, month=aug, pages={4361–4365} }