Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT Reduction of the cobalt ion of cobalamin from the Co(III) to the Co(I) oxidation state is essential for the synthesis of adenosylcobalamin, the coenzymic form of this cofactor. A cob(II)alamin reductase activity in Salmonella enterica serovar Typhimurium LT2 was isolated to homogeneity. N-terminal analysis of the homogeneous protein identified NAD(P)H:flavin oxidoreductase (Fre) (EC 1.6.8.1 ) as the enzyme responsible for this activity. The fre gene was cloned, and the overexpressed protein, with a histidine tag at its N terminus, was purified to homogeneity by nickel affinity chromatography. His-tagged Fre reduced flavins (flavin mononucleotide [FMN] and flavin adenine dinucleotide [FAD]) and cob(III)alamin to cob(II)alamin very efficiently. Photochemically reduced FMN substituted for Fre in the reduction of cob(III)alamin to cob(II)alamin, indicating that the observed cobalamin reduction activity was not Fre dependent but FMNH 2 dependent. Enzyme-independent reduction of cob(III)alamin to cob(II)alamin by FMNH 2 occurred at a rate too fast to be measured. The thermodynamically unfavorable reduction of cob(II)alamin to cob(I)alamin was detectable by alkylation of the cob(I)alamin nucleophile with iodoacetate. Detection of the product, caboxymethylcob(III)alamin, depended on the presence of FMNH 2 in the reaction mixture. FMNH 2 failed to substitute for potassium borohydride in in vitro assays for corrinoid adenosylation catalyzed by the ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme, even under conditions where Fre and NADH were present in the reaction mixture to ensure that FMN was always reduced. These results were interpreted to mean that Fre was not responsible for the generation of cob(I)alamin in vivo. Consistent with this idea, a fre mutant displayed wild-type cobalamin biosynthetic phenotypes. It is proposed that S. enterica serovar Typhimurium LT2 may not have a cob(III)alamin reductase enzyme and that, in vivo, nonadenosylated cobalamin and other corrinoids are maintained as co(II)rrinoids by reduced flavin nucleotides generated by Fre and other flavin oxidoreductases.

Bibliography

Fonseca, M. V., & Escalante-Semerena, J. C. (2000). Reduction of Cob(III)alamin to Cob(II)alamin in Salmonella enterica Serovar Typhimurium LT2. Journal of Bacteriology, 182(15), 4304–4309.

Authors 2
  1. Maris V. Fonseca (first)
  2. Jorge C. Escalante-Semerena (additional)
References 41 Referenced 62
  1. Banerjee R. V. Harder S. R. Ragsdale S. W. Matthews R. G. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study.Biochemistry29199011291135 (10.1021/bi00457a005) / Biochemistry / Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study by Banerjee R. V. (1990)
  2. 10.1128/jb.174.22.7452-7454.1992
  3. Brady R. O. Castanera E. G. Barker H. A. The enzymatic synthesis of cobamide coenzymes.J. Biol. Chem.237196223252332 (10.1016/S0021-9258(19)63441-1) / J. Biol. Chem. / The enzymatic synthesis of cobamide coenzymes by Brady R. O. (1962)
  4. Chan R. K. Botstein D. Watanabe T. Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high transducing lysate.Virology501972883898 (10.1016/0042-6822(72)90442-4) / Virology / Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high transducing lysate by Chan R. K. (1972)
  5. Covès J. Fontecave M. Reduction and mobilization of iron by a NAD(P)H:flavin oxidoreductase from Escherichia coli.Eur. J. Biochem.2111993635641 (10.1111/j.1432-1033.1993.tb17591.x) / Eur. J. Biochem. / Reduction and mobilization of iron by a NAD(P)H:flavin oxidoreductase from Escherichia coli by Covès J. (1993)
  6. Covès J. Niviere V. Eschenbrenner M. Fontecave M. NADPH-sulfite reductase from Escherichia coli. A flavin reductase participating in the generation of the free radical of ribonucleotide reductase.J. Biol. Chem.26819931860418609 (10.1016/S0021-9258(17)46671-3) / J. Biol. Chem. / NADPH-sulfite reductase from Escherichia coli. A flavin reductase participating in the generation of the free radical of ribonucleotide reductase by Covès J. (1993)
  7. Davis R. W. Botstein D. Roth J. R. A manual for genetic engineering: advanced bacterial genetics. 1980 Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y
  8. Dawson R. M. C. Elliott D. C. Elliott W. H. Jones K. M. Data for biochemical research 3rd ed. 1986 Oxford University Press Oxford United Kingdom
  9. 10.1128/jb.172.1.273-280.1990
  10. Fieschi F. Nivière V. Frier C. Décount J.-L. Fontecave M. The mechanism and substrate specificity of the NADPH:flavin oxidoreductase from Escherichia coli.J. Biol. Chem.27019953039230400 (10.1074/jbc.270.51.30392) / J. Biol. Chem. / The mechanism and substrate specificity of the NADPH:flavin oxidoreductase from Escherichia coli by Fieschi F. (1995)
  11. Fontecave M. Eliasson R. Reichard P. NAD(P)H:flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase.J. Biol. Chem.26219871232512331 (10.1016/S0021-9258(18)45356-2) / J. Biol. Chem. / NAD(P)H:flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase by Fontecave M. (1987)
  12. 10.1128/JB.182.7.1788-1793.2000
  13. 10.1128/jb.171.9.4617-4622.1989
  14. Hoover D. M. Jarrett J. T. Sands R. H. Dunham W. R. Ludwig M. L. Matthews R. G. Interactions of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamion cofactor.Biochemistry361997127138 (10.1021/bi961693s) / Biochemistry / Interactions of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamion cofactor by Hoover D. M. (1997)
  15. Huennekens F. M. Vitols K. S. Fujii K. Jacobsen D. W. Biosynthesis of cobalamin coenzymes B12 Dolphin D. 1 1982 145 168 John Wiley & Sons, Inc. New York, N.Y / B12 / Biosynthesis of cobalamin coenzymes by Huennekens F. M. (1982)
  16. Johnson M. G. Escalante-Semerena J. C. Identification of 5,6-dimethylbenzimidazole as the Coα ligand of the cobamide synthesized by Salmonella typhimurium: nutritional characterization of mutants defective in biosynthesis of the imidazole ring.J. Biol. Chem.26719921330213305 (10.1016/S0021-9258(18)42210-7) / J. Biol. Chem. / Identification of 5,6-dimethylbenzimidazole as the Coα ligand of the cobamide synthesized by Salmonella typhimurium: nutritional characterization of mutants defective in biosynthesis of the imidazole ring by Johnson M. G. (1992)
  17. Kunitz M. J. Crystalline inorganic pyrophosphatase isolated from baker's yeast.J. Gen. Physiol.351952423450 (10.1085/jgp.35.3.423) / J. Gen. Physiol. / Crystalline inorganic pyrophosphatase isolated from baker's yeast by Kunitz M. J. (1952)
  18. Laemmli U. K. Cleavage and structural proteins during the assembly of the head of bacteriophage T4.Nature2271970680685 (10.1038/227680a0) / Nature / Cleavage and structural proteins during the assembly of the head of bacteriophage T4 by Laemmli U. K. (1970)
  19. Lexa D. Saveant J.-M. The electrochemistry of vitamin B12.Acc. Chem. Res.161983235243 (10.1021/ar00091a001) / Acc. Chem. Res. / The electrochemistry of vitamin B12 by Lexa D. (1983)
  20. Martı́nez E. Bartolomé B. de la Cruz F. pACY184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids.Gene681988159162 (10.1016/0378-1119(88)90608-7) / Gene / pACY184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids by Martı́nez E. (1988)
  21. Massey V. Hemmerich P. A photochemical procedure for reduction of oxidation-reduction proteins employing deazariboflavin as catalyst.J. Biol. Chem.252197756125614 (10.1016/S0021-9258(17)40065-2) / J. Biol. Chem. / A photochemical procedure for reduction of oxidation-reduction proteins employing deazariboflavin as catalyst by Massey V. (1977)
  22. Michael S. F. Mutagenesis by incorporation of a phosphorylated oligo during PCR amplification.BioTechniques161994410414 / BioTechniques / Mutagenesis by incorporation of a phosphorylated oligo during PCR amplification by Michael S. F. (1994)
  23. 10.1128/jb.173.5.1729-1737.1991
  24. Pezacka E. H. Identification and characterization of two enzymes involved in the intracellular metabolism of cobalamin. Cyanocobalamin β-ligand transferase and microsomal cob(III)alamin reductase.Biochim. Biophys. Acta11571993167177 (10.1016/0304-4165(93)90061-C) / Biochim. Biophys. Acta / Identification and characterization of two enzymes involved in the intracellular metabolism of cobalamin. Cyanocobalamin β-ligand transferase and microsomal cob(III)alamin reductase by Pezacka E. H. (1993)
  25. 10.1128/jb.174.7.2267-2272.1992
  26. Sasse J. Detection of proteins Current protocols in molecular biology Ausubel F. A. Brent R. Kingston R. E. Moore D. D. Seidman J. G. Smith J. A. Struhl K. 1 1991 10.6.1 10.6.8 Wiley Interscience New York, N.Y / Current protocols in molecular biology / Detection of proteins by Sasse J. (1991)
  27. Schmieger H. A method for detection of phage mutants with altered transduction ability.Mol. Gen. Genet.1001971378381 (10.1007/BF00438281) / Mol. Gen. Genet. / A method for detection of phage mutants with altered transduction ability by Schmieger H. (1971)
  28. Schmieger H. Bakhaus H. The origin of DNA in transducing particles of P22 mutants with increased transduction frequencies (HT-mutants).Mol. Gen. Genet.1201973181190 (10.1007/BF00267246) / Mol. Gen. Genet. / The origin of DNA in transducing particles of P22 mutants with increased transduction frequencies (HT-mutants) by Schmieger H. (1973)
  29. 10.1128/jb.173.12.3673-3679.1991
  30. Suh S.-J. Ph.D. dissertation. 1994 University of Wisconsin Madison
  31. 10.1128/jb.177.4.921-925.1995
  32. 10.1128/JB.181.2.368-374.1999
  33. Trzebiatowski J. R. Escalante-Semerena J. C. Purification and characterization of CobT, the nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase enzyme from Salmonella typhimurium LT2.J. Biol. Chem.27219971766217667 (10.1074/jbc.272.28.17662) / J. Biol. Chem. / Purification and characterization of CobT, the nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase enzyme from Salmonella typhimurium LT2 by Trzebiatowski J. R. (1997)
  34. Vitols E. Walker G. A. Huennekens F. M. Enzymatic conversion of vitamin B12s to a cobamide coenzyme, α-(5,6-dimethylbenzimidazolyl)deoxy-adenosylcobamide (adenosyl-B12).J. Biol. Chem.241196614551461 (10.1016/S0021-9258(18)96732-3) / J. Biol. Chem. / Enzymatic conversion of vitamin B12s to a cobamide coenzyme, α-(5,6-dimethylbenzimidazolyl)deoxy-adenosylcobamide (adenosyl-B12) by Vitols E. (1966)
  35. Vogel H. J. Bonner D. M. Acetylornithase of Escherichia coli: partial purification, and some properties.J. Biol. Chem.218195697106 (10.1016/S0021-9258(18)65874-0) / J. Biol. Chem. / Acetylornithase of Escherichia coli: partial purification, and some properties by Vogel H. J. (1956)
  36. Walker G. A. Murphy S. Huennekens F. M. Enzymatic conversion of vitamin B12a to adenosyl-B12: evidence for the existence of two separate reducing systems.Arch. Biochem. Biophys.134196995102 (10.1016/0003-9861(69)90255-0) / Arch. Biochem. Biophys. / Enzymatic conversion of vitamin B12a to adenosyl-B12: evidence for the existence of two separate reducing systems by Walker G. A. (1969)
  37. Watanabe F. Oki Y. Nakano Y. Kitaoka S. Purification and characterization of aquacobalamin reductase (NADPH) from Euglena gracilis.J. Biol. Chem.26219871151411518 (10.1016/S0021-9258(18)60837-3) / J. Biol. Chem. / Purification and characterization of aquacobalamin reductase (NADPH) from Euglena gracilis by Watanabe F. (1987)
  38. Yamada R. Shimizu S. Fukui S. Preparation of solid vitamin B12r by anaerobic photolysis of methylcobalamin.Methods Enzymol.18C19715254 (10.1016/S0076-6879(71)18007-X) / Methods Enzymol. / Preparation of solid vitamin B12r by anaerobic photolysis of methylcobalamin by Yamada R. (1971)
  39. Yamada R.-H. Schimizu S. Fukui S. Disproportionation of vitamin B12r under various mild conditions.Biochemistry7196817131719 (10.1021/bi00845a014) / Biochemistry / Disproportionation of vitamin B12r under various mild conditions by Yamada R.-H. (1968)
  40. 10.1128/JB.180.2.422-425.1998
  41. 10.1128/jb.176.12.3536-3543.1994
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:56 a.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 1:54 p.m.)
Indexed 1 month, 1 week ago (July 24, 2025, 8:03 a.m.)
Issued 25 years, 1 month ago (Aug. 1, 2000)
Published 25 years, 1 month ago (Aug. 1, 2000)
Published Print 25 years, 1 month ago (Aug. 1, 2000)
Funders 0

None

@article{Fonseca_2000, title={Reduction of Cob(III)alamin to Cob(II)alamin in Salmonella enterica Serovar Typhimurium LT2}, volume={182}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.182.15.4304-4309.2000}, DOI={10.1128/jb.182.15.4304-4309.2000}, number={15}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Fonseca, Maris V. and Escalante-Semerena, Jorge C.}, year={2000}, month=aug, pages={4304–4309} }