Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT The sigA and sigB genes of Mycobacterium tuberculosis encode two sigma 70-like sigma factors of RNA polymerase. While transcription of the sigA gene is growth rate independent, sigB transcription is increased during entry into stationary phase. The sigA gene transcription is unresponsive to environmental stress but that of sigB is very responsive, more so in stationary-phase growth than in log-phase cultures. These data suggest that SigA is a primary sigma factor which, like ς 70 , controls the transcription of the housekeeping type of promoters. In contrast, SigB, although showing some overlap in function with SigA, is more like the alternative sigma factor, ς S , which controls the transcription of the gearbox type of promoters. Primer extension analysis identified the RNA start sites for both genes as 129 nucleotides upstream to the GTG start codon of sigA and 27 nucleotides from the ATG start codon of sigB . The −10 promoter of sigA but not that of sigB was similar to the ς 70 promoter. The half-life of the sigA transcript was very long, and this is likely to play an important part in its regulation. In contrast, the half-life of the sigB transcript was short, about 2 min. These results demonstrate that the sigB gene may control the regulons of stationary phase and general stress resistance, while sigA may be involved in the housekeeping regulons.

Bibliography

Hu, Y., & Coates, A. R. M. (1999). Transcription of Two Sigma 70 Homologue Genes, sigA and sigB , in Stationary-Phase Mycobacterium tuberculosis. Journal of Bacteriology, 181(2), 469–476.

Authors 2
  1. Yanmin Hu (first)
  2. Anthony R. M. Coates (additional)
References 44 Referenced 97
  1. Arnold T. E. Yu J. Belasco J. G. mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation.RNA41998319330 / RNA / mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation by Arnold T. E. (1998)
  2. Barnett M. J. Rushing B. G. Fisher R. F. Long S. R. Transcription start sites for syrM and nodD3 flank an insertion sequence relic in Rhizobium meliloti.J. Bacteriol.187199617821787 (10.1128/jb.178.7.1782-1787.1996) / J. Bacteriol. / Transcription start sites for syrM and nodD3 flank an insertion sequence relic in Rhizobium meliloti by Barnett M. J. (1996)
  3. 10.1128/jb.178.16.4847-4853.1996
  4. 10.1128/jb.175.7.1929-1935.1993
  5. 10.1128/jb.175.13.3957-3963.1993
  6. 10.1128/jb.175.24.7931-7937.1993
  7. Caslake L. F. Bryant D. A. The sigA gene encoding the major ς factor of RNA polymerase from the marine cyanbacterium Synechococcus sp. strain PCC 7002: cloning and characterization.Microbiology1421996247357 / Microbiology / The sigA gene encoding the major ς factor of RNA polymerase from the marine cyanbacterium Synechococcus sp. strain PCC 7002: cloning and characterization by Caslake L. F. (1996)
  8. 10.1038/31159
  9. DeMaio J. Zhang Y. Ko C. Young D. B. Bishai W. R. A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis.Proc. Natl. Acad. Sci. USA93199627902794 (10.1073/pnas.93.7.2790) / Proc. Natl. Acad. Sci. USA / A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis by DeMaio J. (1996)
  10. Dickinson J. M. Mitchison D. A. Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis.Am. Rev. Respir. Dis.1231981367371 / Am. Rev. Respir. Dis. / Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis by Dickinson J. M. (1981)
  11. Doukhan L. Predich M. Nair G. Dussurget O. Mandic-Mulec I. Cole S. T. Smith D. R. Smith I. Genomic organization of the mycobacterial sigma gene cluster.Gene16519956770 (10.1016/0378-1119(95)00427-8) / Gene / Genomic organization of the mycobacterial sigma gene cluster by Doukhan L. (1995)
  12. Emory S. A. Bouvet P. Belasco J. G. A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli.Gene Dev.61992135148 (10.1101/gad.6.1.135) / Gene Dev. / A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli by Emory S. A. (1992)
  13. Gomez J. E. Chen J.-M. Bishai W. R. Sigma factors of Mycobacterium tuberculosis.Tubercle Lung Dis.781997175183 (10.1016/S0962-8479(97)90024-1) / Tubercle Lung Dis. / Sigma factors of Mycobacterium tuberculosis by Gomez J. E. (1997)
  14. Gomez M. Doukhan L. Nair G. Smith I. sigA is an essential gene in Mycobacterium smegmatis.Mol. Microbiol.291998617628 (10.1046/j.1365-2958.1998.00960.x) / Mol. Microbiol. / sigA is an essential gene in Mycobacterium smegmatis by Gomez M. (1998)
  15. Helmann J. D. Chamberlin M. J. Structure and function of bacterial sigma factors.Annu. Rev. Biochem.571988839872 (10.1146/annurev.bi.57.070188.004203) / Annu. Rev. Biochem. / Structure and function of bacterial sigma factors by Helmann J. D. (1988)
  16. 10.1128/jb.175.1.259-265.1993
  17. Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in stationary phase gene regulation in Escherichia coli.Cell721993165168 (10.1016/0092-8674(93)90655-A) / Cell / Survival of hunger and stress: the role of rpoS in stationary phase gene regulation in Escherichia coli by Hengge-Aronis R. (1993)
  18. Hobby G. L. Lenert T. F. The in vitro action of antituberculous agents against multiplying and the nonmultiplying microbial.Am. Rev. Tuberc. Pulm. Dis.76195710311048 / Am. Rev. Tuberc. Pulm. Dis. / The in vitro action of antituberculous agents against multiplying and the nonmultiplying microbial by Hobby G. L. (1957)
  19. Hu Y. M. Butcher P. D. Sole K. Mitchison D. A. Coates A. R. M. Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock.FEMS Microbiol. Lett.1581998139145 (10.1111/j.1574-6968.1998.tb12813.x) / FEMS Microbiol. Lett. / Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock by Hu Y. M. (1998)
  20. Ishihama A. Promoter selectivity of prokaryotic RNA polymerase.Trends Genet.41988282286 (10.1016/0168-9525(88)90170-9) / Trends Genet. / Promoter selectivity of prokaryotic RNA polymerase by Ishihama A. (1988)
  21. 10.1128/jb.177.23.6832-6835.1995
  22. Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization.Tubercle72199116 (10.1016/0041-3879(91)90017-M) / Tubercle / The global tuberculosis situation and the new control strategy of the World Health Organization by Kochi A. (1991)
  23. 10.1111/j.1365-2958.1991.tb01825.x
  24. Li Y. Dosch D. C. Strohl W. R. Floss H. G. Nucleotide sequence and transcriptional analysis of the nosiheptide-resistance gene from Streptomyces actousus.Gene911990917 (10.1016/0378-1119(90)90156-L) / Gene / Nucleotide sequence and transcriptional analysis of the nosiheptide-resistance gene from Streptomyces actousus by Li Y. (1990)
  25. 10.1128/jb.174.12.3843-3849.1992
  26. 10.1128/jb.178.24.7138-7143.1996
  27. Mangan J. A. Sole K. M. Mitchison D. A. Butcher P. D. An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria.Nucleic Acids Res.251997675676 (10.1093/nar/25.3.675) / Nucleic Acids Res. / An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria by Mangan J. A. (1997)
  28. 10.1128/jb.173.13.4188-4194.1991
  29. 10.1128/jb.178.2.550-553.1996
  30. Oguiza J. A. Marcos A. T. Martı́n J. F. Transcriptional analysis of the sigA and sigB genes of Brevibacterium lactofermentum.FEMS Microbiol. Lett.1531997111117 (10.1111/j.1574-6968.1997.tb10471.x) / FEMS Microbiol. Lett. / Transcriptional analysis of the sigA and sigB genes of Brevibacterium lactofermentum by Oguiza J. A. (1997)
  31. Orme I. M. A mouse model of the recrudescence of latent tuberculosis in the elderly.Am. Rev. Respir. Dis.1371988716718 (10.1164/ajrccm/137.3.716) / Am. Rev. Respir. Dis. / A mouse model of the recrudescence of latent tuberculosis in the elderly by Orme I. M. (1988)
  32. Parrish N. M. Dick J. D. Bishai W. R. Mechanisms of latency in Mycobacterium tuberculosis.Trends Microbiol.61998107112 (10.1016/S0966-842X(98)01216-5) / Trends Microbiol. / Mechanisms of latency in Mycobacterium tuberculosis by Parrish N. M. (1998)
  33. Romeo J. M. Zusman D. R. Determinants of an unusually stable mRNA in the bacterium Myxococcus xanthus.Mol. Microbiol.6199229752988 (10.1111/j.1365-2958.1992.tb01756.x) / Mol. Microbiol. / Determinants of an unusually stable mRNA in the bacterium Myxococcus xanthus by Romeo J. M. (1992)
  34. Sambrook J. Fritsch E. F. Maniatis T. Molecular cloning: a laboratory manual 2nd ed. 1989 Cold Spring Harbor Laboratory Cold Spring Harbor N.Y
  35. Sanger F. Nicklen S. Coulson A. R. DNA sequencing with chain-terminating inhibitors.Proc. Natl. Acad. Sci. USA74197754635467 (10.1073/pnas.74.12.5463) / Proc. Natl. Acad. Sci. USA / DNA sequencing with chain-terminating inhibitors by Sanger F. (1977)
  36. Schweinle J. E. Evolving concepts of the epidemiology diagnosis, and therapy of Mycobacterium tuberculosis infection.Yale J. Biol. Med.1171990191196 / Yale J. Biol. Med. / Evolving concepts of the epidemiology diagnosis, and therapy of Mycobacterium tuberculosis infection by Schweinle J. E. (1990)
  37. 10.1128/jb.175.12.3905-3908.1993
  38. Stanford J. L. Grange J. M. Pozniak A. Is Africa lost? Lancet 338 1991 557 558 (10.1016/0140-6736(91)91113-9) / Lancet / Is Africa lost? by Stanford J. L. (1991)
  39. Sudre P. ten Dam G. Kochi A. Tuberculosis: a global overview of the situation today.Bull. W. H. O.701992149159 / Bull. W. H. O. / Tuberculosis: a global overview of the situation today by Sudre P. (1992)
  40. Tanaka K. Shiina T. Takahashi H. Nucleotide sequence of genes hrdA, hrdC, and hrdD from Streptomyces coelicolor A3(2) having similarity to rpoD genes.Mol. Gen. Genet.2291991334340 (10.1007/BF00267453) / Mol. Gen. Genet. / Nucleotide sequence of genes hrdA, hrdC, and hrdD from Streptomyces coelicolor A3(2) having similarity to rpoD genes by Tanaka K. (1991)
  41. Tanaka K. Takayanagi Y. Fujita N. Ishihama A. Takahashi H. Heterogeneity of the principal ς factor in Escherichia coli: the rpoS gene product ς38 is a second principal ς factor of RNA polymerase in stationary-phase Escherichia coli.Proc. Natl. Acad. Sci. USA90199335113515 (10.1073/pnas.90.8.3511) / Proc. Natl. Acad. Sci. USA / Heterogeneity of the principal ς factor in Escherichia coli: the rpoS gene product ς38 is a second principal ς factor of RNA polymerase in stationary-phase Escherichia coli by Tanaka K. (1993)
  42. Wayne L. G. Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions.Am. Rev. Respir. Dis.1141976807811 / Am. Rev. Respir. Dis. / Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions by Wayne L. G. (1976)
  43. 10.1128/iai.37.3.1042-1049.1982
  44. Zgurskaya H. I. Keyhan M. Matin A. The ςS level in starving Escherichia coli cells increases solely as a result of its increased stability, despite decreased synthesis.Mol. Microbiol.241997643651 (10.1046/j.1365-2958.1997.3961742.x) / Mol. Microbiol. / The ςS level in starving Escherichia coli cells increases solely as a result of its increased stability, despite decreased synthesis by Zgurskaya H. I. (1997)
Dates
Type When
Created 5 years, 8 months ago (Dec. 31, 2019, 11:41 a.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 1:50 p.m.)
Indexed 5 days, 5 hours ago (Aug. 30, 2025, 12:57 p.m.)
Issued 26 years, 7 months ago (Jan. 15, 1999)
Published 26 years, 7 months ago (Jan. 15, 1999)
Published Print 26 years, 7 months ago (Jan. 15, 1999)
Funders 0

None

@article{Hu_1999, title={Transcription of Two Sigma 70 Homologue Genes, sigA and sigB , in Stationary-Phase Mycobacterium tuberculosis}, volume={181}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.181.2.469-476.1999}, DOI={10.1128/jb.181.2.469-476.1999}, number={2}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Hu, Yanmin and Coates, Anthony R. M.}, year={1999}, month=jan, pages={469–476} }