Abstract
ABSTRACT The two transducers in the phototaxis system of the archaeon Halobacterium salinarum , HtrI and HtrII, are methyl-accepting proteins homologous to the chemotaxis transducers in eubacteria. Consensus sequences predict three glutamate pairs containing potential methylation sites in HtrI and one in HtrII. Mutagenic substitution of an alanine pair for one of these, Glu265-Glu266, in HtrI and for the homologous Glu513-Glu514 in HtrII eliminated methylation of these two transducers, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autofluorography. Photostimulation of the repellent receptor sensory rhodopsin II (SRII) induced reversible demethylation of HtrII, while no detectable change in the extent of methylation of HtrI was observed in response to stimulation of its cognate sensory rhodopsin, the attractant receptor SRI. Cells containing HtrI or HtrII with all consensus sites replaced by alanine still exhibited phototaxis responses and behavioral adaptation, and methanol release assays showed that methyl group turnover was still induced in response to photostimulation of SRI or SRII. By pulse-chase experiments with in vivo l -[ methyl - 3 H]methionine-labeled cells, we found that repetitive photostimulation of SRI complexed with wild-type (or nonmethylatable) HtrI induced methyl group turnover in transducers other than HtrI to the same extent as in wild-type HtrI. Both attractant and repellent stimuli cause a transient increase in the turnover rate of methyl groups in wild-type H. salinarum cells. This result is unlike that obtained with Escherichia coli , in which attractant stimuli decrease and repellent stimuli increase turnover rate, and is similar to that obtained with Bacillus subtilis , which also shows turnover rate increases regardless of the nature of the stimulus. We found that a CheY deletion mutant of H. salinarum exhibited the E. coli -like asymmetric pattern, as has recently also been observed in B. subtilis . Further, we demonstrate that the CheY-dependent feedback effect does not require the stimulated transducer to be methylatable and operates globally on other transducers present in the cell.
References
39
Referenced
37
-
Alam M. Lebert M. Oesterhelt D. Hazelbauer G. L. Methyl-accepting taxis proteins in Halobacterium halobium.EMBO J.81989631639
(
10.1002/j.1460-2075.1989.tb03418.x
) / EMBO J. / Methyl-accepting taxis proteins in Halobacterium halobium by Alam M. (1989) 10.1128/jb.143.2.809-815.1980
- Chen B. Przybyla A. E. An efficient site-directed mutagenesis method based on PCR.BioTechniques171994161162 / BioTechniques / An efficient site-directed mutagenesis method based on PCR by Chen B. (1994)
-
Eisenbach M. Control of bacterial chemotaxis.Mol. Microbiol.201996903910
(
10.1111/j.1365-2958.1996.tb02531.x
) / Mol. Microbiol. / Control of bacterial chemotaxis by Eisenbach M. (1996) -
Falke J. J. Bass R. B. Butler S. L. Chervitz S. A. Danielson M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes.Annu. Rev. Cell Dev. Biol.131997457512
(
10.1146/annurev.cellbio.13.1.457
) / Annu. Rev. Cell Dev. Biol. / The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes by Falke J. J. (1997) 10.1128/jb.145.1.35-42.1981
-
Hazelbauer G. L. Park C. Nowlin D. M. Adaptational “crosstalk” and the crucial role of methylation in chemotactic migration by Escherichia coli.Proc. Natl. Acad. Sci. USA86198914481452
(
10.1073/pnas.86.5.1448
) / Proc. Natl. Acad. Sci. USA / Adaptational “crosstalk” and the crucial role of methylation in chemotactic migration by Escherichia coli by Hazelbauer G. L. (1989) -
Hoff W. D. Jung K.-H. Spudich J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins.Annu. Rev. Biophys. Biomol. Struct.261997223258
(
10.1146/annurev.biophys.26.1.223
) / Annu. Rev. Biophys. Biomol. Struct. / Molecular mechanism of photosignaling by archaeal sensory rhodopsins by Hoff W. D. (1997) 10.1128/JB.180.8.2033-2042.1998
- Jung K.-H. and J. L. Spudich. Unpublished data.
-
Kehry M. R. Dahlquist F. W. The methyl-accepting chemotaxis proteins of Escherichia coli. Identification of the multiple methylation sites on methyl-accepting chemotaxis protein I.J. Biol Chem.25719821037810386
(
10.1016/S0021-9258(18)34030-4
) / J. Biol Chem. / The methyl-accepting chemotaxis proteins of Escherichia coli. Identification of the multiple methylation sites on methyl-accepting chemotaxis protein I by Kehry M. R. (1982) -
Kleene S. J. Toews M. L. Adler J. Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis.J. Biol Chem.252197732143218
(
10.1016/S0021-9258(17)40373-5
) / J. Biol Chem. / Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis by Kleene S. J. (1977) -
Kirby J. R. Kristich C. J. Feinberg S. L. Ordal G. W. Methanol production during chemotaxis to amino acids in Bacillus subtilis.Mol. Microbiol.241997869878
(
10.1046/j.1365-2958.1997.3941759.x
) / Mol. Microbiol. / Methanol production during chemotaxis to amino acids in Bacillus subtilis by Kirby J. R. (1997) -
Kirby J. R. Saulmon M. M. Kristich C. J. Ordal G. W. CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis.J. Biol. Chem.27419991109211100
(
10.1074/jbc.274.16.11092
) / J. Biol. Chem. / CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis by Kirby J. R. (1999) -
Krebs M. P. Mollaaghababa R. Khorana H. G. Gene replacement in Halobacterium halobium and expression of bacteriorhodopsin mutants.Proc. Natl. Acad. Sci. USA90199319871991
(
10.1073/pnas.90.5.1987
) / Proc. Natl. Acad. Sci. USA / Gene replacement in Halobacterium halobium and expression of bacteriorhodopsin mutants by Krebs M. P. (1993) -
Krebs M. P. Spudich E. N. Khorana H. G. Spudich J. L. Synthesis of a gene for sensory rhodopsin I and its functional expression in Halobacterium halobium.Proc. Natl. Acad. Sci. USA90199334863490
(
10.1073/pnas.90.8.3486
) / Proc. Natl. Acad. Sci. USA / Synthesis of a gene for sensory rhodopsin I and its functional expression in Halobacterium halobium by Krebs M. P. (1993) -
Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London)2271970680685
(
10.1038/227680a0
) / Nature (London) / Cleavage of structural proteins during the assembly of the head of bacteriophage T4 by Laemmli U. K. (1970) 10.1126/science.8456299
-
Nordmann B. Lebert M. R. Alam M. Nitz S. Kollmannsberger H. Oesterhelt D. Hazelbauer G. L. Identification of volatile forms of methyl groups released by Halobacterium salinarum.J. Biol. Chem.26919941644916454
(
10.1016/S0021-9258(17)34027-9
) / J. Biol. Chem. / Identification of volatile forms of methyl groups released by Halobacterium salinarum by Nordmann B. (1994) -
Nowlin D. M. Bollinger J. Hazelbauer G. L. Sites of covalent modification in Trg, a sensory transducer of Escherichia coli.J. Biol. Chem.262198760396045
(
10.1016/S0021-9258(18)45534-2
) / J. Biol. Chem. / Sites of covalent modification in Trg, a sensory transducer of Escherichia coli by Nowlin D. M. (1987) 10.1002/j.1460-2075.1995.tb00099.x
-
Rudolph J. Oesterhelt D. Deletion analysis of the che operon in the archaeon Halobacterium salinarium.J. Mol. Biol.2581996548554
(
10.1006/jmbi.1996.0267
) / J. Mol. Biol. / Deletion analysis of the che operon in the archaeon Halobacterium salinarium by Rudolph J. (1996) -
Sanders D. A. Koshland D. E. Jr. Receptor interactions through phosphorylation and methylation pathways in bacterial chemotaxis.Proc. Natl. Acad. Sci. USA85198884258429
(
10.1073/pnas.85.22.8425
) / Proc. Natl. Acad. Sci. USA / Receptor interactions through phosphorylation and methylation pathways in bacterial chemotaxis by Sanders D. A. (1988) -
Spudich E. N. Spudich J. L. Measurement of light regulated phosphoproteins of Halobacterium halobium.Methods Enzymol.261982213216
(
10.1016/0076-6879(82)88029-4
) / Methods Enzymol. / Measurement of light regulated phosphoproteins of Halobacterium halobium by Spudich E. N. (1982) 10.1128/jb.170.9.4280-4285.1988
-
Spudich E. N. Takahashi T. Spudich J. L. Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis.Proc. Natl. Acad. Sci. USA86198977467750
(
10.1073/pnas.86.20.7746
) / Proc. Natl. Acad. Sci. USA / Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis by Spudich E. N. (1989) -
Spudich E. N. Zhang W. Alam M. Spudich J. L. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge.Proc. Natl. Acad. Sci. USA94199749604965
(
10.1073/pnas.94.10.4960
) / Proc. Natl. Acad. Sci. USA / Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge by Spudich E. N. (1997) -
Spudich J. L. Bogomolni R. A. Sensory rhodopsins of halobacteria.Annu. Rev. Biophys. Biophys. Chem.171988193215
(
10.1146/annurev.bb.17.060188.001205
) / Annu. Rev. Biophys. Biophys. Chem. / Sensory rhodopsins of halobacteria by Spudich J. L. (1988) - Spudich J. L. Spudich E. N. Selection and screening methods for halophilic archael rhodopsin mutants Archaea: a laboratory manual. Robb F. T. 1995 23 28 Cold Spring Harbor Laboratory Press Plainview N.Y
-
Stock J. B. Koshland D. E. Jr. A protein methylesterase involved in bacterial sensing.Proc. Natl. Acad. Sci. USA75197836593663
(
10.1073/pnas.75.8.3659
) / Proc. Natl. Acad. Sci. USA / A protein methylesterase involved in bacterial sensing by Stock J. B. (1978) - Stock J. B. Surette M. Chemotaxis Escherichia coli and Salmonella: cellular and molecular biology. Neidhardt F. C. Curtiss R. III Ingraham J. L. Lin E. C. C. Low K. B. Magasanik B. Reznikoff W. S. Riley M. Schaechter M. Umbarger H. E. 1996 123 145 American Society for Microbiology Washington D.C
10.1128/jb.164.1.282-287.1985
-
Terwilliger T. C. Koshland D. E. Jr. Sites of methyl esterification and deamination on the aspartate receptor involved in chemotaxis.J. Biol. Chem.259198477197725
(
10.1016/S0021-9258(17)42852-3
) / J. Biol. Chem. / Sites of methyl esterification and deamination on the aspartate receptor involved in chemotaxis by Terwilliger T. C. (1984) -
Terwilliger T. C. Wang J. Y. Koshland D. E. Jr. Surface structure recognized for covalent modification of the aspartate receptor in chemotaxis.Proc. Natl. Acad. Sci. USA83198667076710
(
10.1073/pnas.83.18.6707
) / Proc. Natl. Acad. Sci. USA / Surface structure recognized for covalent modification of the aspartate receptor in chemotaxis by Terwilliger T. C. (1986) -
Wu J. Li J. Li G. Long D. G. Weis R. M. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation.Biochemistry35199649844993
(
10.1021/bi9530189
) / Biochemistry / The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation by Wu J. (1996) -
Yao V. J. Spudich J. L. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I.Proc. Natl. Acad. Sci. USA8919921191511919
(
10.1073/pnas.89.24.11915
) / Proc. Natl. Acad. Sci. USA / Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I by Yao V. J. (1992) 10.1128/jb.176.22.6931-6935.1994
-
Zhang W. Brooun A. Mueller M. M. Alam M. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.Proc. Natl. Acad. Sci. USA93199682308235
(
10.1073/pnas.93.16.8230
) / Proc. Natl. Acad. Sci. USA / The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein by Zhang W. (1996) -
Zhang W. Brooun A. McCandless J. Banda P. Alam M. Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins.Proc. Natl. Acad. Sci. USA93199646494654
(
10.1073/pnas.93.10.4649
) / Proc. Natl. Acad. Sci. USA / Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins by Zhang W. (1996)
Dates
Type | When |
---|---|
Created | 5 years, 7 months ago (Dec. 31, 2019, 11:39 a.m.) |
Deposited | 4 years ago (July 29, 2021, 1:49 p.m.) |
Indexed | 2 weeks, 3 days ago (Aug. 6, 2025, 9:50 a.m.) |
Issued | 25 years, 11 months ago (Sept. 15, 1999) |
Published | 25 years, 11 months ago (Sept. 15, 1999) |
Published Print | 25 years, 11 months ago (Sept. 15, 1999) |
@article{Perazzona_1999, title={Identification of Methylation Sites and Effects of Phototaxis Stimuli on Transducer Methylation in Halobacterium salinarum}, volume={181}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.181.18.5676-5683.1999}, DOI={10.1128/jb.181.18.5676-5683.1999}, number={18}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Perazzona, Bastianella and Spudich, John L.}, year={1999}, month=sep, pages={5676–5683} }