Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT This work shows that the ribC wild-type gene product has both flavokinase and flavin adenine dinucleotide synthetase (FAD-synthetase) activities. RibC plays an essential role in the flavin metabolism of Bacillus subtilis , as growth of a ribC deletion mutant strain was dependent on exogenous supply of FMN and the presence of a heterologous FAD-synthetase gene in its chromosome. Upon cultivation with growth-limiting amounts of FMN, this ribC deletion mutant strain overproduced riboflavin, while with elevated amounts of FMN in the culture medium, no riboflavin overproduction was observed. In a B. subtilis ribC820 mutant strain, the corresponding ribC820 gene product has reduced flavokinase/FAD-synthetase activity. In this strain, riboflavin overproduction was also repressed by exogenous FMN but not by riboflavin. Thus, flavin nucleotides, but not riboflavin, have an effector function for regulation of riboflavin biosynthesis in B. subtilis , and RibC seemingly is not directly involved in the riboflavin regulatory system. The mutation ribC820 leads to deregulation of riboflavin biosynthesis in B. subtilis , most likely by preventing the accumulation of the effector molecule FMN or FAD.

Bibliography

Mack, M., van Loon, A. P. G. M., & Hohmann, H.-P. (1998). Regulation of Riboflavin Biosynthesis in Bacillus subtilis Is Affected by the Activity of the Flavokinase/Flavin Adenine Dinucleotide Synthetase Encoded by ribC. Journal of Bacteriology, 180(4), 950–955.

Authors 3
  1. Matthias Mack (first)
  2. Adolphus P. G. M. van Loon (additional)
  3. Hans-Peter Hohmann (additional)
References 43 Referenced 119
  1. Arbige M. V. Bulthuis B. A. Schultz J. Crabb D. Fermentation of Bacillus Bacillus subtilis. Sonenshein A. L. Hoch J. A. Losick R. 1993 871 895 American Society for Microbiology Washington D.C
  2. Bacher A. Biosynthesis of flavins Chemistry and biochemistry of flavoenzymes Müller F. 1 1991 215 259 CRC Press Boca Raton, Fla / Chemistry and biochemistry of flavoenzymes / Biosynthesis of flavins by Bacher A. (1991)
  3. Bacher A. Riboflavin kinase and FAD synthetase Chemistry and biochemistry of flavoenzymes Müller F. 1 1991 349 370 CRC Press Boca Raton, Fla / Chemistry and biochemistry of flavoenzymes / Riboflavin kinase and FAD synthetase by Bacher A. (1991)
  4. Bacher A. Eberhardt S. Richter G. Biosynthesis of riboflavin Escherichia coli and Salmonella: cellular and molecular biology 2nd ed. Neidhardt F. C. Curtiss R. III Ingraham J. L. Lin E. C. C. Low K. B. Magasanik B. Reznikoff W. S. Riley M. Schaechter M. Umbarger H. E. 1 1996 657 664 ASM Press Washington, D.C / Escherichia coli and Salmonella: cellular and molecular biology / Biosynthesis of riboflavin by Bacher A. (1996)
  5. Bacher A. Eisenreich K. Kis K. Ladenstein R. Richter G. Scheuring J. Weinkauf S. Biosynthesis of flavins Bioorganic chemistry frontiers Dugas H. Schmidtchen F. P. 3 1993 147 192 Springer-Verlag Berlin, Germany (10.1007/978-3-642-78110-0_5) / Bioorganic chemistry frontiers / Biosynthesis of flavins by Bacher A. (1993)
  6. Barker D. F. Campbell A. M. The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase.J. Mol. Biol.1461981451467 (10.1016/0022-2836(81)90042-5) / J. Mol. Biol. / The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase by Barker D. F. (1981)
  7. 10.1128/jb.177.9.2572-2575.1995
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.Anal. Biochem.721976248254 (10.1016/0003-2697(76)90527-3) / Anal. Biochem. / A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding by Bradford M. M. (1976)
  9. Bresler S. E. Glazunov E. A. Chernik T. P. Schevchenko T. N. Perumov D. A. Investigation of the operon of riboflavin biosynthesis in Bacillus subtilis. V. Flavin mononucleotide and flavin-adenine dinucleotide as effectors in the riboflavin biosynthesis operon.Genetika919758491 / Genetika / Investigation of the operon of riboflavin biosynthesis in Bacillus subtilis. V. Flavin mononucleotide and flavin-adenine dinucleotide as effectors in the riboflavin biosynthesis operon by Bresler S. E. (1975)
  10. Bullock W. O. Fernandez J. M. Short J. M. XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection.BioTechniques51987376379 / BioTechniques / XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection by Bullock W. O. (1987)
  11. Coquard D. Diploma thesis. 1996 Ecole Superieure de Biotechnologie de Strasbourg Illkirch France
  12. Coquard D. Huecas M. Ott M. van Dijl J. M. van Loon A. P. G. M. Hohmann H.-P. Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction.Mol. Gen. Genet.25419978184 (10.1007/s004380050393) / Mol. Gen. Genet. / Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction by Coquard D. (1997)
  13. Cutting S. M. Vander Horn P. B. Genetic Analysis Molecular biological methods for Bacillus modern microbiological methods. Harwood C. R. Cutting S. M. 1990 27 74 John Wiley & Sons Chichester England
  14. Eisenberg M. A. Prakash O. Hisiung S.-C. Purification and properties of the biotin repressor—a bifunctional protein.J. Biol. Chem.25719821516715173 (10.1016/S0021-9258(18)33408-2) / J. Biol. Chem. / Purification and properties of the biotin repressor—a bifunctional protein by Eisenberg M. A. (1982)
  15. Fürste J. P. Pansegrau W. Frank R. Blöcker H. Scholz P. Bagdasarian M. Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector.Gene481986119131 (10.1016/0378-1119(86)90358-6) / Gene / Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector by Fürste J. P. (1986)
  16. Gusarov I. 1996. GenBank database entry Y09721
  17. Gusarov I. V. Y. I. Yomantas Y. I. Kozlov R. A. Kreneva and D. A. Perumov. 1996. Cloning and nucleotide sequence of regulator gene of the Bacillus subtilis riboflavin operon. EMBL databank entry X95312
  18. Hager P. W. Rabinowitz J. C. Translational specificity in B. subtilis The molecular biology of the Bacilli. Dubneau D. 1985 1 29 Academic Press Inc. New York N.Y (10.1016/B978-0-12-222702-8.50007-X)
  19. Hewick R. M. Hunkapillar M. W. Hood L. E. Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator.J. Biol. Chem.256198179907997 (10.1016/S0021-9258(18)43377-7) / J. Biol. Chem. / A gas-liquid solid phase peptide and protein sequenator by Hewick R. M. (1981)
  20. Hümbelin M. V. Griesser T. Keller W. Schurter H. P. Hohmann and A. P. G. M. van Loon. Unpublished results.
  21. Itaya M. Konda K. Tanaka T. A neomycin resistance gene cassette selectable in a single copy state in the Bacillus subtilis chromosome.Nucleic Acids Res.1719894410 (10.1093/nar/17.11.4410) / Nucleic Acids Res. / A neomycin resistance gene cassette selectable in a single copy state in the Bacillus subtilis chromosome by Itaya M. (1989)
  22. Kamio Y. Lin C. K. Regue M. Wu H. C. Characterisation of the ileS-lsp operon in Escherichia coli. Identification of an open reading frame upstream of the ileS gene and potential promoter(s) for the ileS-lsp operon.J. Biol. Chem.260198556165620 (10.1016/S0021-9258(18)89067-6) / J. Biol. Chem. / Characterisation of the ileS-lsp operon in Escherichia coli. Identification of an open reading frame upstream of the ileS gene and potential promoter(s) for the ileS-lsp operon by Kamio Y. (1985)
  23. Kil Y. V. Mironov V. N. Gorishin I. Y. Kreneva R. A. Perumov D. A. Riboflavin operon of Bacillus subtilis—unusual symmetric arrangement of the regulatory region.Mol. Gen. Genet.2331992483486 (10.1007/BF00265448) / Mol. Gen. Genet. / Riboflavin operon of Bacillus subtilis—unusual symmetric arrangement of the regulatory region by Kil Y. V. (1992)
  24. Kitatsuji K. S. Ishino S. Teshiba and M. Arimoto. 1993. Process for producing flavine nucleotides. European patent application 0 542 240 A2.
  25. Kreneva R. A. Perumov D. A. Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon.Mol. Gen. Genet.2221990467469 (10.1007/BF00633858) / Mol. Gen. Genet. / Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon by Kreneva R. A. (1990)
  26. Kreneva R. A. Perumov D. A. Genetic mapping of an additional regulatory locus of the riboflavin operon of Bacillus subtilis.Genetika32199616231628 / Genetika / Genetic mapping of an additional regulatory locus of the riboflavin operon of Bacillus subtilis by Kreneva R. A. (1996)
  27. Mack M. 1997. Unpublished results.
  28. Manstein D. J. Pai E. F. Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes.J. Biol. Chem.26119861616916173 (10.1016/S0021-9258(18)66693-1) / J. Biol. Chem. / Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes by Manstein D. J. (1986)
  29. Mironov V. N. Chikindas M. L. Krayev A. S. Stepanov A. I. Skryabin K. G. Operon organization of riboflavin biosynthesis in Bacillus subtilis.Dokl. Akad. Nauk SSSR3121990237240 / Dokl. Akad. Nauk SSSR / Operon organization of riboflavin biosynthesis in Bacillus subtilis by Mironov V. N. (1990)
  30. Mironov V. N. Krayev A. S. Chernov B. K. Stepanov A. I. Skryabin K. G. Complete nucleotide sequence of riboflavin biosynthesis operon from Bacillus subtilis.Dokl. Akad. Nauk SSSR3051989482486 / Dokl. Akad. Nauk SSSR / Complete nucleotide sequence of riboflavin biosynthesis operon from Bacillus subtilis by Mironov V. N. (1989)
  31. Mironov V. N. Perumov D. A. Kraev A. S. Stepanov A. I. Skryabin K. G. Unusual structure of Bacillus subtilis rib-operon regulatory region.Mol. Biol. (Moscow)241990256261 / Mol. Biol. (Moscow) / Unusual structure of Bacillus subtilis rib-operon regulatory region by Mironov V. N. (1990)
  32. Nielsen P. Rauschenbach P. Bacher A. Phosphates of riboflavin and riboflavin analogs: a reinvestigation by high-performance liquid chromatography.Anal. Biochem.1301983359368 (10.1016/0003-2697(83)90600-0) / Anal. Biochem. / Phosphates of riboflavin and riboflavin analogs: a reinvestigation by high-performance liquid chromatography by Nielsen P. (1983)
  33. Perkins J. B. Pero J. G. Biosynthesis of riboflavin biotin folic acid and cobalamin Bacillus subtilis. Sonenshein A. L. Hoch J. A. Losick R. 1993 319 334 American Society for Microbiology Washington D.C (10.1128/9781555818388.ch23)
  34. Perkins J. B. J. G. Pero and A. Sloma. 1990. Riboflavin overproducing strains of bacteria. European patent application 0 405 370 A1.
  35. Saito H. Shibaat T. Ando T. Mapping of genes determining nonpermissiveness and host specific restriction to bacteriophages in B. subtilis Marburg.Mol. Gen. Genet.1701979117122 (10.1007/BF00337785) / Mol. Gen. Genet. / Mapping of genes determining nonpermissiveness and host specific restriction to bacteriophages in B. subtilis Marburg by Saito H. (1979)
  36. Sambrook J. Fritsch E. F. Maniatis T. E. Molecular cloning: a laboratory manual 2nd ed. 1989 Cold Spring Harbor Laboratory Cold Spring Harbor N.Y
  37. Shiio I. Production of primary metabolites Bacillus subtilis: molecular biology and industrial application Maruo B. Yoshikawa H. 1989 191 211 Kodansha Ltd. and Elsevier Science Publishers Tokyo Japan
  38. Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate.Proc. Natl. Acad. Sci. USA44195810721078 (10.1073/pnas.44.10.1072) / Proc. Natl. Acad. Sci. USA / Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate by Spizizen J. (1958)
  39. Stepanov A. I. V. G. Zdanov A. J. Kukanova M. J. Chaikinson P. M. Rabinovic J. A. V. Iomantas and Z. M. Galuskina. 1983. Verfahren zur Herstellung von Riboflavin. Offenlegungsschrift DE 3420310/A1.
  40. Studier F. W. Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes.Mol. Biol.1891986113130 (10.1016/0022-2836(86)90385-2) / Mol. Biol. / Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes by Studier F. W. (1986)
  41. 10.1128/jb.120.1.466-474.1974
  42. Wilm M. Mann M. Analytical properties of the nanoelectrospray ion source.Anal. Chem.68199618 (10.1021/ac9509519) / Anal. Chem. / Analytical properties of the nanoelectrospray ion source by Wilm M. (1996)
  43. 10.1128/MCB.15.1.264
Dates
Type When
Created 5 years, 7 months ago (Dec. 31, 2019, 11:30 a.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 2:25 p.m.)
Indexed 3 weeks, 1 day ago (Aug. 7, 2025, 4:31 p.m.)
Issued 27 years, 6 months ago (Feb. 15, 1998)
Published 27 years, 6 months ago (Feb. 15, 1998)
Published Print 27 years, 6 months ago (Feb. 15, 1998)
Funders 0

None

@article{Mack_1998, title={Regulation of Riboflavin Biosynthesis in Bacillus subtilis Is Affected by the Activity of the Flavokinase/Flavin Adenine Dinucleotide Synthetase Encoded by ribC}, volume={180}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.180.4.950-955.1998}, DOI={10.1128/jb.180.4.950-955.1998}, number={4}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Mack, Matthias and van Loon, Adolphus P. G. M. and Hohmann, Hans-Peter}, year={1998}, month=feb, pages={950–955} }