Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT The organization of chromatin has a major impact on cellular activities, such as gene expression. For bacteria, it was suggested that the spatial organization of the genetic material correlates with transcriptional levels, implying a specific architecture of the chromosome within the cytoplasm. Accordingly, recent technological advances have emphasized the organization of the genetic material within nucleoid structures. Gemmata obscuriglobus , a member of the phylum Planctomycetes , exhibits a distinctive nucleoid structure in which chromatin is encapsulated within a discrete membrane-bound compartment. Here, we show that this soil and freshwater bacterium tolerates high doses of UV and ionizing radiation. Cryoelectron tomography of frozen hydrated sections and electron microscopy of freeze-substituted cells have indicated a more highly ordered condensed-chromatin organization in actively dividing and stationary-phase G. obscuriglobus cells. These three-dimensional analyses revealed a complex network of double membranes that engulf the condensed DNA. Bioinformatics analysis has revealed the existence of a putative component involved in nonhomologous DNA end joining that presumably plays a role in maintaining chromatin integrity within the bacterium. Thus, our observations further support the notion that packed chromatin organization enhances radiation tolerance.

Bibliography

Lieber, A., Leis, A., Kushmaro, A., Minsky, A., & Medalia, O. (2009). Chromatin Organization and Radio Resistance in the Bacterium Gemmata obscuriglobus. Journal of Bacteriology, 191(5), 1439–1445.

Authors 5
  1. Arnon Lieber (first)
  2. Andrew Leis (additional)
  3. Ariel Kushmaro (additional)
  4. Abraham Minsky (additional)
  5. Ohad Medalia (additional)
References 59 Referenced 45
  1. Al-Amoudi, A., L. P. Norlen, and J. Dubochet. 2004. Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol. 148 : 131-135. (10.1016/j.jsb.2004.03.010) / J. Struct. Biol. (2004)
  2. Aravind, L., and E. V. Koonin. 2001. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 11 : 1365-1374. (10.1101/gr.181001) / Genome Res. (2001)
  3. Blasius, M., R. Buob, I. V. Shevelev, and U. Hubscher. 2007. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans. BMC Mol. Biol. 8 : 69. (10.1186/1471-2199-8-69) / BMC Mol. Biol. (2007)
  4. Brochier, C., and H. Philippe. 2002. Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417 : 244. (10.1038/417244a) / Nature (2002)
  5. Chedin, F., P. Noirot, V. Biaudet, and S. D. Ehrlich. 1998. A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus subtilis. Mol. Microbiol. 29 : 1369-1377. (10.1046/j.1365-2958.1998.01018.x) / Mol. Microbiol. (1998)
  6. Courcelle, J., and P. C. Hanawalt. 2003. RecA-dependent recovery of arrested DNA replication forks. Annu. Rev. Genet. 37 : 611-646. (10.1146/annurev.genet.37.110801.142616) / Annu. Rev. Genet. (2003)
  7. Cox, M. M., and J. R. Battista. 2005. Deinococcus radiodurans—the consummate survivor. Nat. Rev. Microbiol. 3 : 882-892. (10.1038/nrmicro1264) / Nat. Rev. Microbiol. (2005)
  8. Cox, M. M., M. F. Goodman, K. N. Kreuzer, D. J. Sherratt, S. J. Sandler, and K. J. Marians. 2000. The importance of repairing stalled replication forks. Nature 404 : 37-41. (10.1038/35003501) / Nature (2000)
  9. Della, M., P. L. Palmbos, H. M. Tseng, L. M. Tonkin, J. M. Daley, L. M. Topper, R. S. Pitcher, A. E. Tomkinson, T. E. Wilson, and A. J. Doherty. 2004. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306 : 683-685. (10.1126/science.1099824) / Science (2004)
  10. Doherty, A. J., S. P. Jackson, and G. R. Weller. 2001. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett. 500 : 186-188. (10.1016/S0014-5793(01)02589-3) / FEBS Lett. (2001)
  11. 10.1128/JB.187.23.8047-8054.2005
  12. 10.1128/JB.186.18.5973-5977.2004
  13. Errington, J. 2003. Dynamic proteins and a cytoskeleton in bacteria. Nat. Cell Biol. 5 : 175-178. (10.1038/ncb0303-175) / Nat. Cell Biol. (2003)
  14. Feder, N., and R. L. Sidman. 1958. Methods and principles of fixation by freeze-substitution. J. Biophys. Biochem. Cytol. 4 : 593-600. (10.1083/jcb.4.5.593) / J. Biophys. Biochem. Cytol. (1958)
  15. Frangakis, A. S., and R. Hegerl. 2001. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135 : 239-250. (10.1006/jsbi.2001.4406) / J. Struct. Biol. (2001)
  16. Franzmann, P. D., and V. B. Skerman. 1984. Gemmata obscuriglobus, a new genus and species of the budding bacteria. Antonie van Leeuwenhoek 50 : 261-268. (10.1007/BF02342136) / Antonie van Leeuwenhoek (1984)
  17. Frenkiel-Krispin, D., S. Levin-Zaidman, E. Shimoni, S. G. Wolf, E. J. Wachtel, T. Arad, S. E. Finkel, R. Kolter, and A. Minsky. 2001. Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection. EMBO J. 20 : 1184-1191. (10.1093/emboj/20.5.1184) / EMBO J. (2001)
  18. Frenkiel-Krispin, D., and A. Minsky. 2006. Nucleoid organization and the maintenance of DNA integrity in E. coli, B. subtilis and D. radiodurans. J. Struct. Biol. 156 : 311-319. (10.1016/j.jsb.2006.05.014) / J. Struct. Biol. (2006)
  19. 10.1128/JB.186.11.3525-3530.2004
  20. Fuerst, J. A., and R. I. Webb. 1991. Membrane-bounded nucleoid in the eubacterium Gemmatata obscuriglobus. Proc. Natl. Acad. Sci. USA 88 : 8184-8188. (10.1073/pnas.88.18.8184) / Proc. Natl. Acad. Sci. USA (1991)
  21. Gascon, J., A. Oubina, A. Perez-Lezaun, and J. Urmeneta. 1995. Sensitivity of selected bacterial species to UV radiation. Curr. Microbiol. 30 : 177-182. (10.1007/BF00296205) / Curr. Microbiol. (1995)
  22. Gitai, Z. 2005. The new bacterial cell biology: moving parts and subcellular architecture. Cell 120 : 577-586. (10.1016/j.cell.2005.02.026) / Cell (2005)
  23. Gong, C., A. Martins, P. Bongiorno, M. Glickman, and S. Shuman. 2004. Biochemical and genetic analysis of the four DNA ligases of Mycobacteria. J. Biol. Chem. 279 : 20594-20606. (10.1074/jbc.M401841200) / J. Biol. Chem. (2004)
  24. Grimm, R., H. Singh, R. Rachel, D. Typke, W. Zillig, and W. Baumeister. 1998. Electron tomography of ice-embedded prokaryotic cells. Biophys. J. 74 : 1031-1042. (10.1016/S0006-3495(98)74028-7) / Biophys. J. (1998)
  25. Gruska, M., O. Medalia, W. Baumeister, and A. Leis. 2007. Electron tomography of vitreous sections from cultured mammalian cells. J. Struct. Biol. 161 : 384-392. / J. Struct. Biol. (2007)
  26. Hegerl, R. 1996. The EM program package: a platform for image processing in biological electron microscopy. J. Struct. Biol. 116 : 30-34. (10.1006/jsbi.1996.0006) / J. Struct. Biol. (1996)
  27. 10.1128/jb.162.3.960-971.1985
  28. Hohenberg, H., K. Mannweiler, and M. Muller. 1994. High-pressure freezing of cell suspensions in cellulose capillary tubes. J. Microsc. 175 : 34-43. (10.1111/j.1365-2818.1994.tb04785.x) / J. Microsc. (1994)
  29. 10.1128/aem.47.5.915-918.1984
  30. Kowalczykowski, S. C. 1991. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu. Rev. Biophys. Biophys. Chem. 20 : 539-575. (10.1146/annurev.bb.20.060191.002543) / Annu. Rev. Biophys. Biophys. Chem. (1991)
  31. 10.1128/mr.58.3.401-465.1994
  32. 10.1128/MMBR.63.4.751-813.1999
  33. Leforestier, A., and F. Livolant. 1993. Supramolecular ordering of DNA in the cholesteric liquid crystalline phase: an ultrastructural study. Biophys. J. 65 : 56-72. (10.1016/S0006-3495(93)81063-4) / Biophys. J. (1993)
  34. Levin-Zaidman, S., J. Englander, E. Shimoni, A. K. Sharma, K. W. Minton, and A. Minsky. 2003. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299 : 254-256. (10.1126/science.1077865) / Science (2003)
  35. Lindsay, M. R., R. I. Webb, M. Strous, M. S. Jetten, M. K. Butler, R. J. Forde, and J. A. Fuerst. 2001. Cell compartmentalisation in Planctomycetes: novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175 : 413-429. (10.1007/s002030100280) / Arch. Microbiol. (2001)
  36. 10.1128/MMBR.65.1.44-79.2001
  37. 10.1128/jb.178.3.633-637.1996
  38. Minsky, A. 2003. Structural aspects of DNA repair: the role of restricted diffusion. Mol. Microbiol. 50 : 367-376. (10.1046/j.1365-2958.2003.03705.x) / Mol. Microbiol. (2003)
  39. Minsky, A., E. Shimoni, and D. Frenkiel-Krispin. 2002. Stress, order and survival. Nat. Rev. Mol. Cell Biol. 3 : 50-60. (10.1038/nrm700) / Nat. Rev. Mol. Cell Biol. (2002)
  40. 10.1128/JB.186.13.4192-4198.2004
  41. Olins, A. L., B. A. Moyer, S. H. Kim, and D. P. Allison. 1989. Synthesis of a more stable osmium ammine electron-dense DNA stain. J. Histochem. Cytochem. 37 : 395-398. (10.1177/37.3.2465337) / J. Histochem. Cytochem. (1989)
  42. Pennisi, E. 2004. Evolutionary biology: the birth of the nucleus. Science 305 : 766-768. (10.1126/science.305.5685.766) / Science (2004)
  43. Pitcher, R. S., T. E. Wilson, and A. J. Doherty. 2005. New insights into NHEJ repair processes in prokaryotes. Cell Cycle 4 : 675-678. (10.4161/cc.4.5.1676) / Cell Cycle (2005)
  44. 10.1128/aem.61.10.3633-3638.1995
  45. Reich, Z., S. Levin-Zaidman, S. B. Gutman, T. Arad, and A. Minsky. 1994. Supercoiling-regulated liquid-crystalline packaging of topologically-constrained, nucleosome-free DNA molecules. Biochemistry 33 : 14177-14184. (10.1021/bi00251a029) / Biochemistry (1994)
  46. 10.1128/mr.58.2.211-232.1994
  47. Roca, A. I., and M. M. Cox. 1997. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 56 : 129-223. (10.1016/S0079-6603(08)61005-3) / Prog. Nucleic Acid Res. Mol. Biol. (1997)
  48. Schlesner, H. 1994. The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media. Syst. Appl. Microbiol. 17 : 135-145. (10.1016/S0723-2020(11)80042-1) / Syst. Appl. Microbiol. (1994)
  49. Serianni, R. W., and A. K. Bruce. 1968. Radioresistance of Micrococcus radiodurans during the growth cycle. Radiat. Res. 36 : 193-207. (10.2307/3572645) / Radiat. Res. (1968)
  50. Setlow, P. 1995. Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49 : 29-54. (10.1146/annurev.mi.49.100195.000333) / Annu. Rev. Microbiol. (1995)
  51. Studer, D., W. Graber, A. Al-Amoudi, and P. Eggli. 2001. A new approach for cryofixation by high-pressure freezing. J. Microsc. 203 : 285-294. (10.1046/j.1365-2818.2001.00919.x) / J. Microsc. (2001)
  52. 10.1128/JB.01449-07
  53. Weller, G. R., V. L. Brandt, and D. B. Roth. 2004. Doing more with less in bacterial DNA repair. Nat. Struct. Mol. Biol. 11 : 1158-1159. (10.1038/nsmb1204-1158) / Nat. Struct. Mol. Biol. (2004)
  54. Weller, G. R., and A. J. Doherty. 2001. A family of DNA repair ligases in bacteria? FEBS Lett. 505 : 340-342. (10.1016/S0014-5793(01)02831-9) / FEBS Lett. (2001)
  55. Weller, G. R., B. Kysela, R. Roy, L. M. Tonkin, E. Scanlan, M. Della, S. K. Devine, J. P. Day, A. Wilkinson, F. d'Adda di Fagagna, K. M. Devine, R. P. Bowater, P. A. Jeggo, S. P. Jackson, and A. J. Doherty. 2002. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297 : 1686-1689. (10.1126/science.1074584) / Science (2002)
  56. Woebken, D., H. Teeling, P. Wecker, A. Dumitriu, I. Kostadinov, E. F. Delong, R. Amann, and F. O. Glockner. 2007. Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. Isme J. 1 : 419-435. (10.1038/ismej.2007.63) / Isme J. (2007)
  57. 10.1128/mr.51.2.221-271.1987
  58. Zhu, H., and S. Shuman. 2007. Characterization of Agrobacterium tumefaciens DNA ligases C and D. Nucleic Acids Res. 35 : 3631-3645. (10.1093/nar/gkm145) / Nucleic Acids Res. (2007)
  59. Zimmerman, J. M., and J. R. Battista. 2005. A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol. 5 : 17. (10.1186/1471-2180-5-17) / BMC Microbiol. (2005)
Dates
Type When
Created 16 years, 8 months ago (Dec. 12, 2008, 9:48 p.m.)
Deposited 4 years ago (July 29, 2021, 1:10 p.m.)
Indexed 1 year, 2 months ago (June 3, 2024, 3:17 a.m.)
Issued 16 years, 5 months ago (March 1, 2009)
Published 16 years, 5 months ago (March 1, 2009)
Published Print 16 years, 5 months ago (March 1, 2009)
Funders 0

None

@article{Lieber_2009, title={Chromatin Organization and Radio Resistance in the Bacterium Gemmata obscuriglobus}, volume={191}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.01513-08}, DOI={10.1128/jb.01513-08}, number={5}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Lieber, Arnon and Leis, Andrew and Kushmaro, Ariel and Minsky, Abraham and Medalia, Ohad}, year={2009}, month=mar, pages={1439–1445} }