Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACTType III secretion (T3S) is utilized by a wide range of gram-negative bacterial pathogens to allow the efficient delivery of effector proteins into the host cell cytoplasm through the use of a syringe-like injectisome.Chlamydophila pneumoniaeis a gram-negative, obligate intracellular pathogen that has the structural genes coding for a T3S system, but the functionality of the system has not yet been demonstrated. T3S is dependent on ATPase activity, which catalyzes the unfolding of proteins and the secretion of effector proteins through the injectisome. CdsN (Cpn0707) is predicted to be the T3S ATPase ofC. pneumoniaebased on sequence similarity to other T3S ATPases. Full-length CdsN and a C-terminal truncation of CdsN were cloned as glutathioneS-transferase (GST)-tagged constructs and expressed inEscherichia coli. The GST-tagged C-terminal truncation of CdsN possessed ATPase activity, catalyzing the release of ADP and Pifrom ATP at a rate of 0.55 ± 0.07 μmol min−1mg−1in a time- and dose-dependent manner. CdsN formed oligomers and high-molecular-weight multimers, as assessed by formaldehyde fixation and nondenaturing polyacrylamide gel electrophoresis. Using bacterial two-hybrid and GST pull-down assays, CdsN was shown to interact with CdsD, CdsL, CdsQ, and CopN, four putative structural components of theC. pneumoniaeT3S system. CdsN also interacted with an unannotated protein, Cpn0706, a putative CdsN chaperone. Interactions between CdsN, CdsD, and CopN represent novel interactions not previously reported for other bacterial T3S systems and may be important in the localization and/or function of the ATPase at the inner membrane ofC. pneumoniae.

Bibliography

Stone, C. B., Johnson, D. L., Bulir, D. C., Gilchrist, J. D., & Mahony, J. B. (2008). Characterization of the Putative Type III Secretion ATPase CdsN (Cpn0707) ofChlamydophila pneumoniae. Journal of Bacteriology, 190(20), 6580–6588.

Authors 5
  1. Chris B. Stone (first)
  2. Dustin L. Johnson (additional)
  3. David C. Bulir (additional)
  4. Jodi D. Gilchrist (additional)
  5. James B. Mahony (additional)
References 41 Referenced 29
  1. Akeda, Y., and J. Galan. 2005. Chaperone release and unfolding of substrates in type III secretion. Nature 437 : 911-915. (10.1038/nature03992) / Nature (2005)
  2. 10.1128/JB.186.8.2402-2412.2004
  3. Andrade, A., J. Pardo, N. Espinosa, G. Perez-Hernandez, and B. Gonzalez-Pedrajo. 2007. Enzymatic characterization of the enteropathogenic Escherichia coli type III secretion ATPase EscN. Arch. Biochem. Biophys. 468 : 121-127. (10.1016/j.abb.2007.09.020) / Arch. Biochem. Biophys. (2007)
  4. 10.1128/JB.01671-07
  5. 10.1128/JB.188.10.3525-3534.2006
  6. Carabeo, R., S. Grieshaber, A. Hasenkrug, C. Dooley, and T. Hackstadt. 2004. Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells. Traffic 5 : 418-425. (10.1111/j.1398-9219.2004.00184.x) / Traffic (2004)
  7. Clifton, D., K. Fields, S. Grieshaber, C. Dooley, E. Fischer, D. Mead, R. Carabeo, and T. Hackstadt. 2004. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc. Natl. Acad. Sci. USA 101 : 10166-10171. (10.1073/pnas.0402829101) / Proc. Natl. Acad. Sci. USA (2004)
  8. Coombes, B., and J. Mahony. 2002. Identification of MEK- and phosphoinositide-3-kinase-dependant signaling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell. Microbiol. 4 : 447-460. (10.1046/j.1462-5822.2002.00203.x) / Cell. Microbiol. (2002)
  9. 10.1038/nrmicro1526
  10. Fields, K., and T. Hackstadt. 2000. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol. Microbiol. 38 : 1048-1060. (10.1046/j.1365-2958.2000.02212.x) / Mol. Microbiol. (2000)
  11. Fields, K., D. Mead, C. Dooley, and T. Hackstadt. 2003. Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol. Microbiol. 48 : 671-683. (10.1046/j.1365-2958.2003.03462.x) / Mol. Microbiol. (2003)
  12. Galan, J., and A. Collmer. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284 : 1322-1328. (10.1126/science.284.5418.1322) / Science (1999)
  13. Galan, J., and H. Wolf-Watz. 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444 : 567-573. (10.1038/nature05272) / Nature (2006)
  14. 10.1128/JB.185.23.6747-6755.2003
  15. 10.1128/MMBR.68.4.771-795.2004
  16. 10.1128/JB.01034-06
  17. Herrmann, M., A. Schuhmacher, I. Muhldorfer, K. Melchers, C. Prothmann, and S. Dammeier. 2006. Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183. Res. Microbiol. 157 : 513-524. (10.1016/j.resmic.2005.12.005) / Res. Microbiol. (2006)
  18. Hoare, A., P. Timms, P. Bavoil, and D. Wilson. 2008. Spatial constraints within the chlamydial host cell inclusion predict interrupted development and persistence. BMC Microbiol. 8 : 5. (10.1186/1471-2180-8-5) / BMC Microbiol. (2008)
  19. Hsia, R., Y. Pannekoek, E. Ingerowski, and P. Bavoil. 1997. Type III secretion genes identify a putative virulence locus of Chlamydia. Mol. Microbiol. 23 : 351-359. / Mol. Microbiol. (1997)
  20. 10.1128/MMBR.62.2.379-433.1998
  21. Hybiske, K., and R. Stephens. 2007. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. USA 104 : 11430-11435. (10.1073/pnas.0703218104) / Proc. Natl. Acad. Sci. USA (2007)
  22. 10.1128/JB.00893-07
  23. 10.1128/JB.01997-07
  24. Journet, L., C. Agrain, P. Broz, and G. Cornelis. 2003. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302 : 1757-1760. (10.1126/science.1091422) / Science (2003)
  25. 10.1128/JB.187.7.2233-2243.2005
  26. Lane, B., C. Mutchler, S. Khodor, S. Grieshaber, and R. Carabeo. 2008. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog. 4 : 1-11. / PLoS Pathog. (2008)
  27. Lugert, R., M. Kuhns, T. Polch, and U. Gross. 2004. Expression and localization of type III secretion-related proteins of Chlamydia pneumoniae. Med. Microbiol. Immunol. 193 : 163-171. (10.1007/s00430-003-0206-x) / Med. Microbiol. Immunol. (2004)
  28. Minamino, T., and M. Macnab. 2000. FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits ATPase activity. Mol. Microbiol. 37 : 1494-1503. (10.1046/j.1365-2958.2000.02106.x) / Mol. Microbiol. (2000)
  29. 10.1128/mr.55.1.143-190.1991
  30. Muller, S., C. Pozidis, R. Stone, C. Meesters, M. Chami, A. Engel, A. Economou, and H. Stahlberg. 2006. Double hexameric ring assembly of the type III protein translocase ATPase HrcN. Mol. Microbiol. 61 : 119-125. (10.1111/j.1365-2958.2006.05219.x) / Mol. Microbiol. (2006)
  31. Pallen, M., C. Bailey, and S. Beatson. 2006. Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the F0F1 and vacuolar ATPases. Protein Sci. 15 : 935-940. (10.1110/ps.051958806) / Protein Sci. (2006)
  32. Peters, J., J. Wilson, G. Myers, P. Timms, and P. Bavoil. 2007. Type III secretion a la Chlamydia. Trends Microbiol. 15 : 241-251. (10.1016/j.tim.2007.04.005) / Trends Microbiol. (2007)
  33. Pozidis, C., A. Chalkiadaki, A. Gomez-Serrano, H. Stahlberg, I. Brown, A. Tampakaki, et al. 2003. Type III protein translocase: HrcN is a peripheral ATPase that is activated by oligomerization. J. Biol. Chem. 278 : 25816-25824. (10.1074/jbc.M301903200) / J. Biol. Chem. (2003)
  34. Scidmore, M., and T. Hackstadt. 2001. Mammalian 14-3-3beta associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol. Microbiol. 39 : 1638-1650. (10.1046/j.1365-2958.2001.02355.x) / Mol. Microbiol. (2001)
  35. Sorg, J., B. Blaylock, and O. Schneewind. 2006. Secretion signal recognition by YscN, the Yersinia type III secretion ATPase. Proc. Natl. Acad. Sci. USA 103 : 16490-16495. (10.1073/pnas.0605974103) / Proc. Natl. Acad. Sci. USA (2006)
  36. 10.1126/science.282.5389.754
  37. Su, H., F. McClarty, G. Dong, Z. Hatch, K. Pan, and G. Zhong. 2004. Activation of Raf/Mek/Erk/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J. Biol. Chem. 279 : 9409-9416. (10.1074/jbc.M312008200) / J. Biol. Chem. (2004)
  38. Subtil, A., B. Wyplosz, M. Balana, and A. Dautry-Varsat. 2004. Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity. J. Cell Sci. 117 : 3923-3933. (10.1242/jcs.01247) / J. Cell Sci. (2004)
  39. Thomas, J., G. Stafford, and C. Hughes. 2004. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc. Natl. Acad. Sci. USA 101 : 3945-3950. (10.1073/pnas.0307223101) / Proc. Natl. Acad. Sci. USA (2004)
  40. 10.1128/jb.176.6.1561-1569.1994
  41. Zarivach, R., M. Vuckovic, W. Deng, B. Finlay, and N. Strynadka. 2007. Structural analysis of a prototypical ATPase from the type III secretion system. Nat. Struct. Mol. Biol. 14 : 131-137. (10.1038/nsmb1196) / Nat. Struct. Mol. Biol. (2007)
Dates
Type When
Created 17 years ago (Aug. 18, 2008, 7:44 p.m.)
Deposited 1 year, 5 months ago (Feb. 29, 2024, 5:53 a.m.)
Indexed 1 year, 1 month ago (July 18, 2024, 5:16 p.m.)
Issued 16 years, 10 months ago (Oct. 15, 2008)
Published 16 years, 10 months ago (Oct. 15, 2008)
Published Print 16 years, 10 months ago (Oct. 15, 2008)
Funders 0

None

@article{Stone_2008, title={Characterization of the Putative Type III Secretion ATPase CdsN (Cpn0707) ofChlamydophila pneumoniae}, volume={190}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.00761-08}, DOI={10.1128/jb.00761-08}, number={20}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Stone, Chris B. and Johnson, Dustin L. and Bulir, David C. and Gilchrist, Jodi D. and Mahony, James B.}, year={2008}, month=oct, pages={6580–6588} }