Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT The serine protease autotransporters of Enterobacteriaceae (SPATEs) represent a large family of virulence factors. The prevailing model for autotransporter secretion comprises entry to the periplasm via the Sec apparatus, followed by an obscure series of steps in which the C terminus of the periplasmic species inserts into the outer membrane as a β-barrel protein, accompanied by translocation of the passenger domain to the bacterial cell surface. Little is known about the fate of the autotransporter proteins in the periplasm, including whether accessory periplasmic proteins are involved in translocation to the external milieu. Here we studied the role of the major periplasmic chaperones in the biogenesis of EspP, a prototype SPATE protein produced by Escherichia coli O157:H7. The yeast two-hybrid approach, secretion analysis of chaperone mutant strains, and surface plasmon resonance analysis (SPR) revealed direct protein-protein interactions between the periplasmic SurA and DegP chaperones and either the EspP-β or EspP passenger domains. The secretion of EspP was moderately reduced in the surA and skp mutant strains but severely impaired in the degP background. Site-directed mutagenesis of highly conserved aromatic amino acid residues in the SPATE family resulted in ∼80% reduction of EspP secretion. Synthetic peptides containing aromatic residues derived from the EspP passenger domain blocked DegP and SurA binding to the passenger domain. SPR suggested direct protein-protein interaction between periplasmic chaperones and the unfolded EspP passenger domain. Our data suggest that translocation of AT proteins may require accessory factors, calling into question the moniker “autotransporter.”

Bibliography

Ruiz-Perez, F., Henderson, I. R., Leyton, D. L., Rossiter, A. E., Zhang, Y., & Nataro, J. P. (2009). Roles of Periplasmic Chaperone Proteins in the Biogenesis of Serine Protease Autotransporters of Enterobacteriaceae. Journal of Bacteriology, 191(21), 6571–6583.

Authors 6
  1. Fernando Ruiz-Perez (first)
  2. Ian R. Henderson (additional)
  3. Denisse L. Leyton (additional)
  4. Amanda E. Rossiter (additional)
  5. Yinghua Zhang (additional)
  6. James P. Nataro (additional)
References 48 Referenced 111
  1. Arie, J. P., N. Sassoon, and J. M. Betton. 2001. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39 : 199-210. (10.1046/j.1365-2958.2001.02250.x) / Mol. Microbiol. (2001)
  2. Behrens, S., R. Maier, H. de Cock, F. X. Schmid, and C. A. Gross. 2001. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20 : 285-294. (10.1093/emboj/20.1.285) / EMBO J. (2001)
  3. Bernstein, H. D. 2007. Are bacterial ‘autotransporters’ really transporters? Trends Microbiol. 15 : 441-447. (10.1016/j.tim.2007.09.007) / Trends Microbiol. (2007)
  4. Bitto, E., and D. B. McKay. 2004. Binding of phage-display-selected peptides to the periplasmic chaperone protein SurA mimics binding of unfolded outer membrane proteins. FEBS Lett. 568 : 94-98. (10.1016/j.febslet.2004.05.014) / FEBS Lett. (2004)
  5. Bitto, E., and D. B. McKay. 2002. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10 : 1489-1498. (10.1016/S0969-2126(02)00877-8) / Structure (2002)
  6. Bitto, E., and D. B. McKay. 2003. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J. Biol. Chem. 278 : 49316-49322. (10.1074/jbc.M308853200) / J. Biol. Chem. (2003)
  7. 10.1128/JB.183.3.951-958.2001
  8. Chen, R., and U. Henning. 1996. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19 : 1287-1294. (10.1111/j.1365-2958.1996.tb02473.x) / Mol. Microbiol. (1996)
  9. Dartigalongue, C., and S. Raina. 1998. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J. 17 : 3968-3980. (10.1093/emboj/17.14.3968) / EMBO J. (1998)
  10. Dautin, N., T. J. Barnard, D. E. Anderson, and H. D. Bernstein. 2007. Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism. EMBO J. 26 : 1942-1952. (10.1038/sj.emboj.7601638) / EMBO J. (2007)
  11. Dautin, N., and H. D. Bernstein. 2007. Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu. Rev. Microbiol. 61 : 89-112. (10.1146/annurev.micro.61.080706.093233) / Annu. Rev. Microbiol. (2007)
  12. 10.1128/IAI.70.12.7105-7113.2002
  13. Henderson, I. R., J. P. Nataro, J. B. Kaper, T. F. Meyer, S. K. Farrand, D. L. Burns, B. B. Finlay, and J. W. St. Geme III. 2000. Renaming protein secretion in the gram-negative bacteria. Trends Microbiol. 8 : 352. / Trends Microbiol. (2000)
  14. Henderson, I. R., F. Navarro-Garcia, and J. P. Nataro. 1998. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6 : 370-378. (10.1016/S0966-842X(98)01318-3) / Trends Microbiol. (1998)
  15. Hennecke, G., J. Nolte, R. Volkmer-Engert, J. Schneider-Mergener, and S. Behrens. 2005. The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J. Biol. Chem. 280 : 23540-23548. (10.1074/jbc.M413742200) / J. Biol. Chem. (2005)
  16. Jacob-Dubuisson, F., R. Fernandez, and L. Coutte. 2004. Protein secretion through autotransporter and two-partner pathways. Biochim. Biophys. Acta 1694 : 235-257. (10.1016/j.bbamcr.2004.03.008) / Biochim. Biophys. Acta (2004)
  17. 10.1128/JB.00228-07
  18. Jiang, J., X. Zhang, Y. Chen, Y. Wu, Z. H. Zhou, Z. Chang, and S. F. Sui. 2008. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc. Natl. Acad. Sci. USA 105 : 11939-11944. (10.1073/pnas.0805464105) / Proc. Natl. Acad. Sci. USA (2008)
  19. Jong, W. S., C. M. ten Hagen-Jongman, T. den Blaauwen, D. J. Slotboom, J. R. Tame, D. Wickstrom, J. W. de Gier, B. R. Otto, and J. Luirink. 2007. Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Mol. Microbiol. 63 : 1524-1536. (10.1111/j.1365-2958.2007.05605.x) / Mol. Microbiol. (2007)
  20. Kadokura, H., H. Kawasaki, K. Yoda, M. Yamasaki, and K. Kitamoto. 2001. Efficient export of alkaline phosphatase overexpressed from a multicopy plasmid requires degP, a gene encoding a periplasmic protease of Escherichia coli. J. Gen. Appl. Microbiol. 47 : 133-141. (10.2323/jgam.47.133) / J. Gen. Appl. Microbiol. (2001)
  21. Klauser, T., J. Pohlner, and T. F. Meyer. 1990. Extracellular transport of cholera toxin B subunit using Neisseria IgA protease beta-domain: conformation-dependent outer membrane translocation. EMBO J. 9 : 1991-1999. (10.1002/j.1460-2075.1990.tb08327.x) / EMBO J. (1990)
  22. 10.1128/jb.178.20.5925-5929.1996
  23. Krojer, T., M. Garrido-Franco, R. Huber, M. Ehrmann, and T. Clausen. 2002. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416 : 455-459. (Erratum, 417:102.) (10.1038/416455a) / Nature (2002)
  24. Krojer, T., J. Sawa, E. Schafer, H. R. Saibil, M. Ehrmann, and T. Clausen. 2008. Structural basis for the regulated protease and chaperone function of DegP. Nature 453 : 885-890. (10.1038/nature07004) / Nature (2008)
  25. 10.1038/227680a0
  26. Liu, J., and C. T. Walsh. 1990. Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc. Natl. Acad. Sci. USA 87 : 4028-4032. (10.1073/pnas.87.11.4028) / Proc. Natl. Acad. Sci. USA (1990)
  27. Mogensen, J. E., and D. E. Otzen. 2005. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57 : 326-346. (10.1111/j.1365-2958.2005.04674.x) / Mol. Microbiol. (2005)
  28. Otto, B. R., R. Sijbrandi, J. Luirink, B. Oudega, J. G. Heddle, K. Mizutani, S. Y. Park, and J. R. Tame. 2005. Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. J. Biol. Chem. 280 : 17339-17345. (10.1074/jbc.M412885200) / J. Biol. Chem. (2005)
  29. 10.1128/JB.185.10.3020-3030.2003
  30. Pohlner, J., R. Halter, K. Beyreuther, and T. F. Meyer. 1987. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325 : 458-462. (10.1038/325458a0) / Nature (1987)
  31. 10.1128/JB.00483-07
  32. Ramm, K., and A. Pluckthun. 2001. High enzymatic activity and chaperone function are mechanistically related features of the dimeric E. coli peptidyl-prolyl-isomerase FkpA. J. Mol. Biol. 310 : 485-498. (10.1006/jmbi.2001.4747) / J. Mol. Biol. (2001)
  33. Ramm, K., and A. Pluckthun. 2000. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. II. Isomerase-independent chaperone activity in vitro. J. Biol. Chem. 275 : 17106-17113. (10.1074/jbc.M910234199) / J. Biol. Chem. (2000)
  34. 10.1128/JB.183.23.6794-6800.2001
  35. Robert, V., E. B. Volokhina, F. Senf, M. P. Bos, P. Van Gelder, and J. Tommassen. 2006. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol. 4 : e377. (10.1371/journal.pbio.0040377) / PLoS Biol. (2006)
  36. Rouviere, P. E., and C. A. Gross. 1996. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 10 : 3170-3182. (10.1101/gad.10.24.3170) / Genes Dev. (1996)
  37. Schleiff, E., and J. Soll. 2005. Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Rep. 6 : 1023-1027. (10.1038/sj.embor.7400563) / EMBO Rep. (2005)
  38. Songyang, Z., A. S. Fanning, C. Fu, J. Xu, S. M. Marfatia, A. H. Chishti, A. Crompton, A. C. Chan, J. M. Anderson, and L. C. Cantley. 1997. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275 : 73-77. (10.1126/science.275.5296.73) / Science (1997)
  39. Spiers, A., H. K. Lamb, S. Cocklin, K. A. Wheeler, J. Budworth, A. L. Dodds, M. J. Pallen, D. J. Maskell, I. G. Charles, and A. R. Hawkins. 2002. PDZ domains facilitate binding of high temperature requirement protease A (HtrA) and tail-specific protease (Tsp) to heterologous substrates through recognition of the small stable RNA A (ssrA)-encoded peptide. J. Biol. Chem. 277 : 39443-39449. (10.1074/jbc.M202790200) / J. Biol. Chem. (2002)
  40. Spiess, C., A. Beil, and M. Ehrmann. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97 : 339-347. (10.1016/S0092-8674(00)80743-6) / Cell (1999)
  41. Struyve, M., M. Moons, and J. Tommassen. 1991. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J. Mol. Biol. 218 : 141-148. (10.1016/0022-2836(91)90880-F) / J. Mol. Biol. (1991)
  42. 10.1093/nar/22.22.4673
  43. Veiga, E., V. de Lorenzo, and L. A. Fernandez. 2004. Structural tolerance of bacterial autotransporters for folded passenger protein domains. Mol. Microbiol. 52 : 1069-1080. (10.1111/j.1365-2958.2004.04014.x) / Mol. Microbiol. (2004)
  44. Velarde, J. J., and J. P. Nataro. 2004. Hydrophobic residues of the autotransporter EspP linker domain are important for outer membrane translocation of its passenger. J. Biol. Chem. 279 : 31495-31504. (10.1074/jbc.M404424200) / J. Biol. Chem. (2004)
  45. Voulhoux, R., M. P. Bos, J. Geurtsen, M. Mols, and J. Tommassen. 2003. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299 : 262-265. (10.1126/science.1078973) / Science (2003)
  46. Walsh, N. P., B. M. Alba, B. Bose, C. A. Gross, and R. T. Sauer. 2003. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113 : 61-71. (10.1016/S0092-8674(03)00203-4) / Cell (2003)
  47. Xu, X., S. Wang, Y. X. Hu, and D. B. McKay. 2007. The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. J. Mol. Biol. 373 : 367-381. (10.1016/j.jmb.2007.07.069) / J. Mol. Biol. (2007)
  48. Yue, J., and R. Fernandez. 2005. SurA is required for the secretion of the autotransporter BrkA, abstr. B-356, p.97. Abstr. 105th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC. / Abstr. 105th Gen. Meet. Am. Soc. Microbiol. (2005)
Dates
Type When
Created 15 years, 11 months ago (Sept. 4, 2009, 10:09 p.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 1:09 p.m.)
Indexed 4 weeks ago (Aug. 5, 2025, 8:39 a.m.)
Issued 15 years, 10 months ago (Nov. 1, 2009)
Published 15 years, 10 months ago (Nov. 1, 2009)
Published Print 15 years, 10 months ago (Nov. 1, 2009)
Funders 0

None

@article{Ruiz_Perez_2009, title={Roles of Periplasmic Chaperone Proteins in the Biogenesis of Serine Protease Autotransporters of Enterobacteriaceae}, volume={191}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.00754-09}, DOI={10.1128/jb.00754-09}, number={21}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Ruiz-Perez, Fernando and Henderson, Ian R. and Leyton, Denisse L. and Rossiter, Amanda E. and Zhang, Yinghua and Nataro, James P.}, year={2009}, month=nov, pages={6571–6583} }