Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT The accessory Sec system of Streptococcus gordonii is essential for transport of the glycoprotein GspB to the bacterial cell surface. A key component of this dedicated transport system is SecA2. The SecA2 proteins of streptococci and staphylococci are paralogues of SecA and are presumed to have an analogous role in protein transport, but they may be specifically adapted for the transport of large, serine-rich glycoproteins. We used a combination of genetic and biochemical methods to assess whether the S. gordonii SecA2 functions similarly to SecA. Although mutational analyses demonstrated that conserved amino acids are essential for the function of SecA2, replacing such residues in one of two nucleotide binding folds had only minor effects on SecA2 function. SecA2-mediated transport is highly sensitive to azide, as is SecA-mediated transport. Comparison of the S. gordonii SecA and SecA2 proteins in vitro revealed that SecA2 can hydrolyze ATP at a rate similar to that of SecA and is comparably sensitive to azide but that the biochemical properties of these enzymes are subtly different. That is, SecA2 has a lower solubility in aqueous solutions and requires higher Mg 2+ concentrations for maximal activity. In spite of the high degree of similarity between the S. gordonii paralogues, analysis of SecA-SecA2 chimeras indicates that the domains are not readily interchangeable. This suggests that specific, unique contacts between SecA2 and other components of the accessory Sec system may preclude cross-functioning with the canonical Sec system.

Bibliography

Bensing, B. A., & Sullam, P. M. (2009). Characterization of Streptococcus gordonii SecA2 as a Paralogue of SecA. Journal of Bacteriology, 191(11), 3482–3491.

Authors 2
  1. Barbara A. Bensing (first)
  2. Paul M. Sullam (additional)
References 57 Referenced 26
  1. 10.1128/JB.186.3.638-645.2004
  2. 10.1128/IAI.72.11.6528-6537.2004
  3. 10.1128/JB.00027-07
  4. Bensing, B. A., and P. M. Sullam. 2002. An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol. Microbiol. 44 : 1081-1094. (10.1046/j.1365-2958.2002.02949.x) / Mol. Microbiol. (2002)
  5. Bensing, B. A., D. Takamatsu, and P. M. Sullam. 2005. Determinants of the streptococcal surface glycoprotein GspB that facilitate export by the accessory Sec system. Mol. Microbiol. 58 : 1468-1481. (10.1111/j.1365-2958.2005.04919.x) / Mol. Microbiol. (2005)
  6. Bowler, M. W., M. G. Montgomery, A. G. Leslie, and J. E. Walker. 2006. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 103 : 8646-8649. (10.1073/pnas.0602915103) / Proc. Natl. Acad. Sci. USA (2006)
  7. 10.1128/JB.183.24.6979-6990.2001
  8. Braunstein, M., B. J. Espinosa, J. Chan, J. T. Belisle, and W. R. Jacobs, Jr. 2003. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol. Microbiol. 48 : 453-464. (10.1046/j.1365-2958.2003.03438.x) / Mol. Microbiol. (2003)
  9. Bryan, E. M., T. Bae, M. Kleerebezem, and G. M. Dunny. 2000. Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44 : 183-190. (10.1006/plas.2000.1484) / Plasmid (2000)
  10. 10.1128/JB.00748-07
  11. Chen, Q., H. Wu, R. Kumar, Z. Peng, and P. M. Fives-Taylor. 2006. SecA2 is distinct from SecA in immunogenic specificity, subcellular distribution and requirement for membrane anchoring in Streptococcus parasanguis. FEMS Microbiol. Lett. 264 : 174-181. (10.1111/j.1574-6968.2006.00455.x) / FEMS Microbiol. Lett. (2006)
  12. Claverys, J. P., A. Dintilhac, E. V. Pestova, B. Martin, and D. A. Morrison. 1995. Construction and evaluation of new drug-resistance cassettes for gene disruption mutagenesis in Streptococcus pneumoniae, using an ami test platform. Gene 164 : 123-128. (10.1016/0378-1119(95)00485-O) / Gene (1995)
  13. Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16 : 10881-10890. (10.1093/nar/16.22.10881) / Nucleic Acids Res. (1988)
  14. Driessen, A. J., and N. Nouwen. 2008. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77 : 643-667. (10.1146/annurev.biochem.77.061606.160747) / Annu. Rev. Biochem. (2008)
  15. Erlandson, K. J., S. B. Miller, Y. Nam, A. R. Osborne, J. Zimmer, and T. A. Rapoport. 2008. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455 : 984-987. (10.1038/nature07439) / Nature (2008)
  16. Fekkes, P., C. van der Does, and A. J. Driessen. 1997. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 16 : 6105-6113. (10.1093/emboj/16.20.6105) / EMBO J. (1997)
  17. 10.1128/IAI.69.4.2512-2519.2001
  18. Gelis, I., A. M. Bonvin, D. Keramisanou, M. Koukaki, G. Gouridis, S. Karamanou, A. Economou, and C. G. Kalodimos. 2007. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131 : 756-769. (10.1016/j.cell.2007.09.039) / Cell (2007)
  19. Gold, V. A., A. Robson, A. R. Clarke, and I. Collinson. 2007. Allosteric regulation of SecA: magnesium-mediated control of conformation and activity. J. Biol. Chem. 282 : 17424-17432. (10.1074/jbc.M702066200) / J. Biol. Chem. (2007)
  20. 10.1128/JB.00412-08
  21. 10.1128/jb.177.12.3518-3526.1995
  22. Hunt, J. F., S. Weinkauf, L. Henry, J. J. Fak, P. McNicholas, D. B. Oliver, and J. Deisenhofer. 2002. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297 : 2018-2026. (10.1126/science.1074424) / Science (2002)
  23. Jilaveanu, L. B., and D. B. Oliver. 2007. In vivo membrane topology of Escherichia coli SecA ATPase reveals extensive periplasmic exposure of multiple functionally important domains clustering on one face of SecA. J. Biol. Chem. 282 : 4661-4668. (10.1074/jbc.M610828200) / J. Biol. Chem. (2007)
  24. Jongbloed, J. D., H. Antelmann, M. Hecker, R. Nijland, S. Bron, U. Airaksinen, F. Pries, W. J. Quax, J. M. van Dijl, and P. G. Braun. 2002. Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J. Biol. Chem. 277 : 44068-44078. (10.1074/jbc.M203191200) / J. Biol. Chem. (2002)
  25. Karamanou, S., G. Gouridis, E. Papanikou, G. Sianidis, I. Gelis, D. Keramisanou, E. Vrontou, C. G. Kalodimos, and A. Economou. 2007. Preprotein-controlled catalysis in the helicase motor of SecA. EMBO J. 26 : 2904-2914. (10.1038/sj.emboj.7601721) / EMBO J. (2007)
  26. Karamanou, S., E. Vrontou, G. Sianidis, C. Baud, T. Roos, A. Kuhn, A. S. Politou, and A. Economou. 1999. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34 : 1133-1145. (10.1046/j.1365-2958.1999.01686.x) / Mol. Microbiol. (1999)
  27. Kourtz, L., and D. Oliver. 2000. Tyr-326 plays a critical role in controlling SecA-preprotein interaction. Mol. Microbiol. 37 : 1342-1356. (10.1046/j.1365-2958.2000.02078.x) / Mol. Microbiol. (2000)
  28. Lenz, L. L., S. Mohammadi, A. Geissler, and D. A. Portnoy. 2003. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc. Natl. Acad. Sci. USA 100 : 12432-12437. (10.1073/pnas.2133653100) / Proc. Natl. Acad. Sci. USA (2003)
  29. Lenz, L. L., and D. A. Portnoy. 2002. Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol. Microbiol. 45 : 1043-1056. (10.1046/j.1365-2958.2002.03072.x) / Mol. Microbiol. (2002)
  30. Lill, R., W. Dowhan, and W. Wickner. 1990. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60 : 271-280. (10.1016/0092-8674(90)90742-W) / Cell (1990)
  31. Matsumoto, G., H. Nakatogawa, H. Mori, and K. Ito. 2000. Genetic dissection of SecA: suppressor mutations against the secY205 translocase defect. Genes Cells 5 : 991-999. (10.1046/j.1365-2443.2000.00388.x) / Genes Cells (2000)
  32. 10.1111/j.1365-2958.1993.tb00921.x
  33. 10.1128/IAI.00316-06
  34. Owens, M. U., W. E. Swords, M. G. Schmidt, C. H. King, and F. D. Quinn. 2002. Cloning, expression, and functional characterization of the Mycobacterium tuberculosis secA gene. FEMS Microbiol. Lett. 211 : 133-141. (10.1111/j.1574-6968.2002.tb11215.x) / FEMS Microbiol. Lett. (2002)
  35. Papanikolau, Y., M. Papadovasilaki, R. B. Ravelli, A. A. McCarthy, S. Cusack, A. Economou, and K. Petratos. 2007. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. J. Mol. Biol. 366 : 1545-1557. (10.1016/j.jmb.2006.12.049) / J. Mol. Biol. (2007)
  36. Papanikou, E., S. Karamanou, C. Baud, G. Sianidis, M. Frank, and A. Economou. 2004. Helicase motif III in SecA is essential for coupling preprotein binding to translocation ATPase. EMBO Rep. 5 : 807-811. (10.1038/sj.embor.7400206) / EMBO Rep. (2004)
  37. Papanikou, E., S. Karamanou, and A. Economou. 2007. Bacterial protein secretion through the translocase nanomachine. Nat. Rev. Microbiol. 5 : 839-851. (10.1038/nrmicro1771) / Nat. Rev. Microbiol. (2007)
  38. Plummer, C., H. Wu, S. W. Kerrigan, G. Meade, D. Cox, and C. W. Ian Douglas. 2005. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br. J. Haematol. 129 : 101-109. (10.1111/j.1365-2141.2005.05421.x) / Br. J. Haematol. (2005)
  39. 10.1099/mic.0.27556-0
  40. Rigel, N. W., and M. Braunstein. 2008. A new twist on an old pathway: accessory Sec systems. Mol. Microbiol. 69 : 291-302. (10.1111/j.1365-2958.2008.06294.x) / Mol. Microbiol. (2008)
  41. Rigel, N. W., H. S. Gibbons, J. R. McCann, J. A. McDonough, S. Kurtz, and M. Braunstein. 2009. The accessory SecA2 system of mycobacteria requires ATP binding and the canonical SecA1. J. Biol. Chem. 284 : 9927-9946. (10.1074/jbc.M900325200) / J. Biol. Chem. (2009)
  42. 10.1086/589775
  43. Seifert, K. N., E. E. Adderson, A. A. Whiting, J. F. Bohnsack, P. J. Crowley, and L. J. Brady. 2006. A unique serine-rich repeat protein (Srr-2) and novel surface antigen (ε) associated with a virulent lineage of serotype III Streptococcus agalactiae. Microbiology 152 : 1029-1040. (10.1099/mic.0.28516-0) / Microbiology (2006)
  44. Sianidis, G., S. Karamanou, E. Vrontou, K. Boulias, K. Repanas, N. Kyrpides, A. S. Politou, and A. Economou. 2001. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J. 20 : 961-970. (10.1093/emboj/20.5.961) / EMBO J. (2001)
  45. 10.1128/IAI.73.4.2273-2280.2005
  46. 10.1128/iai.55.8.1743-1750.1987
  47. 10.1128/IAI.74.1.740-743.2006
  48. Takamatsu, D., B. A. Bensing, H. Cheng, G. A. Jarvis, I. R. Siboo, J. A. Lopez, J. M. Griffiss, and P. M. Sullam. 2005. Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibα. Mol. Microbiol. 58 : 380-392. (10.1111/j.1365-2958.2005.04830.x) / Mol. Microbiol. (2005)
  49. 10.1128/IAI.74.3.1933-1940.2006
  50. 10.1128/JB.186.21.7100-7111.2004
  51. Takamatsu, D., B. A. Bensing, and P. M. Sullam. 2004. Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol. Microbiol. 52 : 189-203. (10.1111/j.1365-2958.2004.03978.x) / Mol. Microbiol. (2004)
  52. 10.1128/JB.187.11.3878-3883.2005
  53. Vrontou, E., and A. Economou. 2004. Structure and function of SecA, the preprotein translocase nanomotor. Biochim. Biophys. Acta 1694 : 67-80. (10.1016/j.bbamcr.2004.06.003) / Biochim. Biophys. Acta (2004)
  54. Vrontou, E., S. Karamanou, C. Baud, G. Sianidis, and A. Economou. 2004. Global co-ordination of protein translocation by the SecA IRA1 switch. J. Biol. Chem. 279 : 22490-22497. (10.1074/jbc.M401008200) / J. Biol. Chem. (2004)
  55. Xiong, Y. Q., B. A. Bensing, A. S. Bayer, H. F. Chambers, and P. M. Sullam. 2008. Role of the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis of infective endocarditis. Microb. Pathog. 45 : 297-301. (10.1016/j.micpath.2008.06.004) / Microb. Pathog. (2008)
  56. Zimmer, J., Y. Nam, and T. A. Rapoport. 2008. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455 : 936-943. (10.1038/nature07335) / Nature (2008)
  57. Zito, C. R., E. Antony, J. F. Hunt, D. B. Oliver, and M. M. Hingorani. 2005. Role of a conserved glutamate residue in the Escherichia coli SecA ATPase mechanism. J. Biol. Chem. 280 : 14611-14619. (10.1074/jbc.M414224200) / J. Biol. Chem. (2005)
Dates
Type When
Created 16 years, 4 months ago (April 10, 2009, 8:39 p.m.)
Deposited 4 years, 1 month ago (July 29, 2021, 1:45 p.m.)
Indexed 1 year, 3 months ago (May 17, 2024, 7 p.m.)
Issued 16 years, 3 months ago (June 1, 2009)
Published 16 years, 3 months ago (June 1, 2009)
Published Print 16 years, 3 months ago (June 1, 2009)
Funders 0

None

@article{Bensing_2009, title={Characterization of Streptococcus gordonii SecA2 as a Paralogue of SecA}, volume={191}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.00365-09}, DOI={10.1128/jb.00365-09}, number={11}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Bensing, Barbara A. and Sullam, Paul M.}, year={2009}, month=jun, pages={3482–3491} }