Crossref journal-article
American Society for Microbiology
Journal of Bacteriology (235)
Abstract

ABSTRACT Pseudomonas aeruginosa type IV pili (T4P) are virulence factors that promote infection of cystic fibrosis and immunosuppressed patients. As the absence of T4P impairs colonization, they are attractive targets for the development of novel therapeutics. Genes in the pilMNOPQ operon are important for both T4P assembly and a form of bacterial movement, called twitching motility, that is required for pathogenicity. The type II membrane proteins, PilN and PilO, dimerize via their periplasmic domains and anchor this complex in the inner membrane. Our earlier work showed that PilNO binds PilP, a periplasmic lipoprotein (S. Tammam, L. M. Sampaleanu, J. Koo, P. Sundaram, M. Ayers, P. A. Chong, J. D. Forman-Kay, L. L. Burrows, and P. L. Howell, Mol. Microbiol. 82: 1496–1514, 2011). Here, we show that PilP interacts with the N0 segment of the outer membrane secretin PilQ via its C-terminal domain, and that the N-terminal cytoplasmic tail of PilN binds to the actin-like protein PilM, thereby connecting all cellular compartments via the PilMNOPQ protein interaction network. We show that PilA, the major pilin subunit, interacts with PilNOPQ. The results allow us to propose a model whereby PilA makes extensive contacts with the transenvelope complex, possibly to increase local concentrations of PilA monomers for polymerization. The PilNOP complex could provide a stable anchor in the inner membrane, while the PilMNOPQ transenvelope complex facilitates transit of the pilus through the periplasm and clamps the pilus in the cell envelope. The PilMN interaction is proposed to be responsible for communicating signals from the cytoplasmic to periplasmic components of this complex macromolecular machine.

Bibliography

Tammam, S., Sampaleanu, L. M., Koo, J., Manoharan, K., Daubaras, M., Burrows, L. L., & Howell, P. L. (2013). PilMNOPQ from the Pseudomonas aeruginosa Type IV Pilus System Form a Transenvelope Protein Interaction Network That Interacts with PilA. Journal of Bacteriology, 195(10), 2126–2135.

Authors 7
  1. Stephanie Tammam (first)
  2. Liliana M. Sampaleanu (additional)
  3. Jason Koo (additional)
  4. Kumararaaj Manoharan (additional)
  5. Mark Daubaras (additional)
  6. Lori L. Burrows (additional)
  7. P. Lynne Howell (additional)
References 47 Referenced 95
  1. 10.1128/jvi.12.5.1139-1148.1973
  2. BradleyDE. 1974. The adsorption of pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology 58:149–163. (10.1016/0042-6822(74)90150-0) / Virology / The adsorption of pilus-dependent bacteriophages to a host mutant with nonretractile pili by Bradley DE (1974)
  3. BurrowsLL. 2005. Weapons of mass retraction. Mol. Microbiol. 57:878–888. (10.1111/j.1365-2958.2005.04703.x) / Mol. Microbiol / Weapons of mass retraction by Burrows LL (2005)
  4. 10.1073/pnas.242523299
  5. 10.1146/annurev-micro-092611-150055
  6. BerryJ-L PhelanMM CollinsRF AdomavicusT TonjumT FryeSA BirdL OwensRJ FordRC LianL-Y DerrickJP. 2012. Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog. 8:e1002923. doi:10.1371/journal.ppat.1002923. (10.1371/journal.ppat.1002923) / PLoS Pathog / Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis by Berry J-L (2012)
  7. 10.1128/JB.00996-08
  8. AyersM SampaleanuL TammamSD KooJ HarveyH HowellPL BurrowsLL. 2009. PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin. J. Mol. Biol. 394:128–142. (10.1016/j.jmb.2009.09.034) / J. Mol. Biol / PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin by Ayers M (2009)
  9. KaruppiahV DerrickJP. 2011. Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus. J. Biol. Chem. 286:24434–24442. (10.1074/jbc.M111.243535) / J. Biol. Chem / Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus by Karuppiah V (2011)
  10. YamagataA MilgotinaE Scanlon CraigKL TainerJA DonnenbergMS. 2012. Structure of an essential type IV pilus biogenesis protein provides insights into pilus and type II secretion systems. J. Mol. Biol. 419:110–124. (10.1016/j.jmb.2012.02.041) / J. Mol. Biol / Structure of an essential type IV pilus biogenesis protein provides insights into pilus and type II secretion systems by Yamagata A (2012)
  11. SampaleanuLM BonannoJB AyersM KooJ TammamS BurleySK AlmoSC BurrowsLL HowellPL. 2009. Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J. Mol. Biol. 394:143–159. (10.1016/j.jmb.2009.09.037) / J. Mol. Biol / Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex by Sampaleanu LM (2009)
  12. TammamS SampaleanuLM KooJ SundaramP AyersM ChongPA Forman-KayJD BurrowsLL HowellPL. 2011. Characterization of the PilN, PilO and PilP type IVa pilus subcomplex. Mol. Microbiol. 82:1496–1514. (10.1111/j.1365-2958.2011.07903.x) / Mol. Microbiol / Characterization of the PilN, PilO and PilP type IVa pilus subcomplex by Tammam S (2011)
  13. GiltnerCL HabashM BurrowsLL. 2010. Pseudomonas aeruginosa minor pilins are incorporated into type IV pilus. J. Mol. Biol. 398:444–461. (10.1016/j.jmb.2010.03.028) / J. Mol. Biol / Pseudomonas aeruginosa minor pilins are incorporated into type IV pilus by Giltner CL (2010)
  14. AyersM HowellPL BurrowsLL. 2010. Architectures of the type II secretion and type IV pilus machineries. Future Microbiol. 5:1203–1218. (10.2217/fmb.10.76) / Future Microbiol / Architectures of the type II secretion and type IV pilus machineries by Ayers M (2010)
  15. PeabodyCR ChungYJ Yen Vidal-IngigliardiM-RD PugsleyAP SaierMHJ. 2003. Type II protein secretion and its relationship to bacterial type IV pili and archael flagella. Microbiology 149:3051–3072. (10.1099/mic.0.26364-0) / Microbiology / Type II protein secretion and its relationship to bacterial type IV pili and archael flagella by Peabody CR (2003)
  16. RusselM. 1998. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J. Mol. Biol. 279:485–499. (10.1006/jmbi.1998.1791) / J. Mol. Biol / Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems by Russel M (1998)
  17. AbendrothJ KregerAC HolWG. 2009. The dimer formed by the periplasmic domain of EpsL from the type 2 secretion system of Vibrio parahaemolyticus. J. Struct. Biol. 168:313–322. (10.1016/j.jsb.2009.07.022) / J. Struct. Biol / The dimer formed by the periplasmic domain of EpsL from the type 2 secretion system of Vibrio parahaemolyticus by Abendroth J (2009)
  18. AbendrothJ BagdasarianM SandkvistM HolWGJ. 2004. The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J. Mol. Biol. 344:619–633. (10.1016/j.jmb.2004.09.062) / J. Mol. Biol / The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily by Abendroth J (2004)
  19. AbendrothJ MurphyP SandkvistM BagdasarianM HolWGJ. 2005. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol. 348:845–855. (10.1016/j.jmb.2005.02.061) / J. Mol. Biol / The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae by Abendroth J (2005)
  20. 10.1128/JB.182.3.742-748.2000
  21. GuS KellyG WangX FrenkielT ShevchikVE PickersgillRW. 2012. Solution structure of the HR domain of the type II secretion system. J. Biol. Chem. 287:9072–9080. (10.1074/jbc.M111.300624) / J. Biol. Chem / Solution structure of the HR domain of the type II secretion system by Gu S (2012)
  22. KorotkovKV JohnsonTL JoblingMG PrunedaJ PardonE HérouxA TurleyS SteyaertJ HolmesRK SandkvistM HolWGJ. 2011. Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog. 7:e1002228. doi:10.1371/journal.ppat.1002228. (10.1371/journal.ppat.1002228) / PLoS Pathog / Structural and functional studies on the interaction of GspC and GspD in the type II secretion system by Korotkov KV (2011)
  23. GeorgiadouM CastagniniM KarimovaG LadantD PelicicV. 2012. Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Mol. Microbiol. 84:857–873. (10.1111/j.1365-2958.2012.08062.x) / Mol. Microbiol / Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly by Georgiadou M (2012)
  24. 10.1128/JB.00060-07
  25. 10.1006/jmbi.2000.4042
  26. WaterhouseAM ProcterJB MartinDMA ClampM BartonGJ. 2009. Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. (10.1093/bioinformatics/btp033) / Bioinformatics / Jalview version 2–a multiple sequence alignment editor and analysis workbench by Waterhouse AM (2009)
  27. ColeC BarberJD BartonGJ. 2008. The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 36:W197–W201. (10.1093/nar/gkn238) / Nucleic Acids Res / The Jpred 3 secondary structure prediction server by Cole C (2008)
  28. DeLanoWL. 2002. The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA. / The PyMOL molecular graphics system by DeLano WL (2002)
  29. 10.1007/BF00283883
  30. ArtsJ de GrootA BallG DurandE KhattabiME FillouxA TommassenJ KosterM. 2007. Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF). Microbiology 153:1582–1592. (10.1099/mic.0.2006/002840-0) / Microbiology / Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF) by Arts J (2007)
  31. PyB LoiseauL BarrasF. 2001. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep. 2:244–248. (10.1093/embo-reports/kve042) / EMBO Rep / An inner membrane platform in the type II secretion machinery of Gram-negative bacteria by Py B (2001)
  32. MilgotinaEI LiebermanJA DonnenbergMS. 2011. The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol. Microbiol. 81:1125–1127. (10.1111/j.1365-2958.2011.07771.x) / Mol. Microbiol / The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine by Milgotina EI (2011)
  33. LeeM-S ChenL-Y LeuW-M ShiauR-J HuN-T. 2005. Associations of the major pseudopilin XpsG with XpsN (GspC) and secretin XpsD of Xanthomonas campsetris pv. campestris type II secretion apparatus revealed by cross-linking analysis. J. Biol. Chem. 280:4585–4591. (10.1074/jbc.M409362200) / J. Biol. Chem / Associations of the major pseudopilin XpsG with XpsN (GspC) and secretin XpsD of Xanthomonas campsetris pv. campestris type II secretion apparatus revealed by cross-linking analysis by Lee M-S (2005)
  34. GrayMD BagdasarianM HolWGJ SandkvistM. 2011. In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae. Mol. Microbiol. 79:786–798. (10.1111/j.1365-2958.2010.07487.x) / Mol. Microbiol / In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae by Gray MD (2011)
  35. 10.1128/JB.185.22.6695-6701.2003
  36. 10.1046/j.1365-2958.2001.02200.x
  37. SchraidtO MarlovitsTC. 2011. Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 331:1192–1195. (10.1126/science.1199358) / Science / Three-dimensional model of Salmonella's needle complex at subnanometer resolution by Schraidt O (2011)
  38. McLaughlinLS HaftRJ ForestKT. 2012. Structural insights into the type II secretion nanomachine. Curr. Opin. Struct. Biol. 22:208–216. (10.1016/j.sbi.2012.02.005) / Curr. Opin. Struct. Biol / Structural insights into the type II secretion nanomachine by McLaughlin LS (2012)
  39. FronzesR ScharerE WangL SaibilH OrlovaEV WaksmanG. 2009. Structure of a type IV secretions system core complex. Science 323:266–268. (10.1126/science.1166101) / Science / Structure of a type IV secretions system core complex by Fronzes R (2009)
  40. Van der MeerenR WenY Van GelderP TommassenJ DevreeseB SavvidesSN. 2013. New insights into the assembly of bacterial secretins: structural studies of the periplasmic domain of XcpQ from Pseudomonas aeruginosa. J. Biol. Chem. 288:1214–1225. (10.1074/jbc.M112.432096) / J. Biol. Chem / New insights into the assembly of bacterial secretins: structural studies of the periplasmic domain of XcpQ from Pseudomonas aeruginosa by Van der Meeren R (2013)
  41. WangX PineauC GuS GuschinskayaN PickersgillRW ShevchikVE. 2012. Cysteine scanning mutagenesis and disulfide mapping analysis of the arrangement of GspC and GspD protomers within the T2SS. J. Biol. Chem. 287:19082–19093. (10.1074/jbc.M112.346338) / J. Biol. Chem / Cysteine scanning mutagenesis and disulfide mapping analysis of the arrangement of GspC and GspD protomers within the T2SS by Wang X (2012)
  42. 10.1128/JB.06330-11
  43. 10.1046/j.1365-2958.1998.00677.x
  44. KusJV TullisE CvitkovitchDG BurrowsLL. 2004. Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolated from cystic fibrosis (CF) versus non-CF patients. Microbiology 150:1315–1326. (10.1099/mic.0.26822-0) / Microbiology / Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolated from cystic fibrosis (CF) versus non-CF patients by Kus JV (2004)
  45. NguyenY JacksonSG AidooF JunopM BurrowsLL. 2010. Structural characterization of novel Pseudomonas aeruginosa type IV pilins. J. Mol. Biol. 395:491–503. (10.1016/j.jmb.2009.10.070) / J. Mol. Biol / Structural characterization of novel Pseudomonas aeruginosa type IV pilins by Nguyen Y (2010)
  46. DouziB BallG CambillauC TegoniM VoulhouxR. 2011. Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J. Biol. Chem. 286:40792–40801. (10.1074/jbc.M111.294843) / J. Biol. Chem / Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates by Douzi B (2011)
  47. TakharHK KempK KimM HowellPL BurrowsLL. 2013. The platform protein is essential for type IV pilus biogenesis. J. Biol. Chem. doi:10.1074/jbc.M113.453506. / J. Biol. Chem / The platform protein is essential for type IV pilus biogenesis by Takhar HK (2013)
Dates
Type When
Created 12 years, 5 months ago (March 2, 2013, 7:16 a.m.)
Deposited 4 years ago (July 29, 2021, 1:31 p.m.)
Indexed 11 months, 4 weeks ago (Aug. 26, 2024, 7:43 p.m.)
Issued 12 years, 3 months ago (May 15, 2013)
Published 12 years, 3 months ago (May 15, 2013)
Published Print 12 years, 3 months ago (May 15, 2013)
Funders 0

None

@article{Tammam_2013, title={PilMNOPQ from the Pseudomonas aeruginosa Type IV Pilus System Form a Transenvelope Protein Interaction Network That Interacts with PilA}, volume={195}, ISSN={1098-5530}, url={http://dx.doi.org/10.1128/jb.00032-13}, DOI={10.1128/jb.00032-13}, number={10}, journal={Journal of Bacteriology}, publisher={American Society for Microbiology}, author={Tammam, Stephanie and Sampaleanu, Liliana M. and Koo, Jason and Manoharan, Kumararaaj and Daubaras, Mark and Burrows, Lori L. and Howell, P. Lynne}, year={2013}, month=may, pages={2126–2135} }