Crossref journal-article
American Society for Microbiology
Infection and Immunity (235)
Abstract

ABSTRACT To elucidate the host cell machinery utilized by Chlamydia trachomatis to invade epithelial cells, we examined the role of the actin cytoskeleton in the internalization of chlamydial elementary bodies (EBs). Treatment of HeLa cells with cytochalasin D markedly inhibited the internalization of C. trachomatis serovar L2 and D EBs. Association of EBs with HeLa cells induced localized actin polymerization at the site of attachment, as visualized by either phalloidin staining of fixed cells or the active recruitment of GFP-actin in viable infected cells. The recruitment of actin to the specific site of attachment was accompanied by dramatic changes in the morphology of cell surface microvilli. Ultrastructural studies revealed a transient microvillar hypertrophy that was dependent upon C. trachomatis attachment, mediated by structural components on the EBs, and cytochalasin D sensitive. In addition, a mutant CHO cell line that does not support entry of C. trachomatis serovar L2 did not display such microvillar hypertrophy following exposure to L2 EBs, which is in contrast to infection with serovar D, to which it is susceptible. We propose that C. trachomatis entry is facilitated by an active actin remodeling process that is induced by the attachment of this pathogen, resulting in distinct microvillar reorganization throughout the cell surface and the formation of a pedestal-like structure at the immediate site of attachment and entry.

Bibliography

Carabeo, R. A., Grieshaber, S. S., Fischer, E., & Hackstadt, T. (2002). Chlamydia trachomatis Induces Remodeling of the Actin Cytoskeleton during Attachment and Entry into HeLa Cells. Infection and Immunity, 70(7), 3793–3803.

Authors 4
  1. Reynaldo A. Carabeo (first)
  2. Scott S. Grieshaber (additional)
  3. Elizabeth Fischer (additional)
  4. Ted Hackstadt (additional)
References 62 Referenced 137
  1. 10.1083/jcb.129.2.367
  2. 10.1002/j.1460-2075.1996.tb00696.x
  3. Allison, A. C., P. Davies, and S. De Petris. 1971. Role of contractile microfilaments in macrophage movement and endocytosis. Nat. New Biol.232:153-155. / Nat. New Biol. (1971)
  4. 10.1136/gut.28.10.1283
  5. 10.1046/j.1365-2958.1998.00861.x
  6. 10.1073/pnas.86.10.3867
  7. 10.1016/S0966-842X(00)01738-8
  8. 10.1242/jcs.112.10.1487
  9. 10.1016/S0167-7012(00)00132-9
  10. 10.1016/S0171-9335(99)80030-2
  11. 10.1128/iai.14.3.645-651.1976
  12. 10.1128/iai.19.2.598-606.1978
  13. 10.1128/iai.31.3.1161-1176.1981
  14. 10.1128/IAI.69.9.5899-5904.2001
  15. 10.1128/IAI.68.7.4005-4011.2000
  16. 10.1128/iai.55.11.2681-2688.1987
  17. 10.1128/iai.65.7.2914-2924.1997
  18. 10.1146/annurev.cellbio.14.1.137
  19. 10.1128/IAI.68.4.2315-2322.2000
  20. 10.1128/IAI.69.9.5940-5942.2001
  21. 10.1073/pnas.82.10.3197
  22. 10.1046/j.1365-2958.2000.02212.x
  23. 10.1126/science.276.5313.718
  24. 10.1242/jcs.99.2.283
  25. 10.1128/IAI.67.2.844-852.1999
  26. 10.1093/infdis/164.4.693
  27. 10.1038/364639a0
  28. 10.1099/00221287-23-3-613
  29. 10.1146/annurev.cellbio.17.1.53
  30. 10.1128/iai.62.10.4641-4645.1994
  31. 10.1083/jcb.120.3.695
  32. 10.1128/iai.25.1.463-466.1979
  33. Hackstadt, T. 1999. Cell biology, p. 101-138. In R. S. Stephens (ed.), Chlamydia: intracellular biology, pathogenesis, and immunity. ASM Press, Washington, D.C. / Chlamydia: intracellular biology (1999)
  34. 10.1128/IAI.67.8.4201-4207.1999
  35. 10.1002/j.1460-2075.1992.tb05253.x
  36. 10.1128/iai.56.6.1456-1463.1988
  37. 10.1128/iai.54.3.855-863.1986
  38. 10.1126/science.274.5288.780
  39. 10.1083/jcb.151.2.249
  40. 10.1128/iai.65.12.5309-5319.1997
  41. 10.1073/pnas.93.3.1254
  42. 10.1128/mr.49.3.298-337.1985
  43. 10.1128/mr.55.1.143-190.1991
  44. 10.1093/infdis/130.3.300
  45. 10.1128/iai.58.10.3208-3216.1990
  46. 10.1128/iai.59.9.3033-3039.1991
  47. 10.1083/jcb.87.1.132
  48. 10.1128/iai.63.1.324-332.1995
  49. 10.1046/j.1365-2958.2000.02057.x
  50. 10.1242/jcs.112.13.2059
  51. 10.1128/am.28.6.912-914.1974
  52. 10.1126/science.282.5389.754
  53. 10.1073/pnas.93.20.11143
  54. 10.1046/j.1462-5822.2000.00046.x
  55. 10.1093/emboj/18.12.3249
  56. Ward, M. E., and A. Murray. 1984. Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: mechanisms of endocytosis. J. Gen. Microbiol.130:1765-1780. / J. Gen. Microbiol. (1984)
  57. 10.1128/IAI.68.4.2379-2385.2000
  58. 10.1128/iai.57.8.2378-2389.1989
  59. 10.1016/0092-8674(92)90296-O
  60. 10.1046/j.1365-2958.2001.02230.x
  61. 10.1126/science.283.5410.2092
  62. 10.1073/pnas.92.8.3546
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 6:09 a.m.)
Deposited 3 years, 6 months ago (March 4, 2022, 10:02 p.m.)
Indexed 3 months, 1 week ago (May 27, 2025, 10:58 a.m.)
Issued 23 years, 2 months ago (July 1, 2002)
Published 23 years, 2 months ago (July 1, 2002)
Published Print 23 years, 2 months ago (July 1, 2002)
Funders 0

None

@article{Carabeo_2002, title={Chlamydia trachomatis Induces Remodeling of the Actin Cytoskeleton during Attachment and Entry into HeLa Cells}, volume={70}, ISSN={1098-5522}, url={http://dx.doi.org/10.1128/iai.70.7.3793-3803.2002}, DOI={10.1128/iai.70.7.3793-3803.2002}, number={7}, journal={Infection and Immunity}, publisher={American Society for Microbiology}, author={Carabeo, Reynaldo A. and Grieshaber, Scott S. and Fischer, Elizabeth and Hackstadt, Ted}, year={2002}, month=jul, pages={3793–3803} }