Crossref journal-article
American Society for Microbiology
Applied and Environmental Microbiology (235)
Abstract

ABSTRACT Geobacter sulfurreducens is a well-studied representative of the Geobacteraceae , which play a critical role in organic matter oxidation coupled to Fe(III) reduction, bioremediation of groundwater contaminated with organics or metals, and electricity production from waste organic matter. In order to investigate G. sulfurreducens central metabolism and electron transport, a metabolic model which integrated genome-based predictions with available genetic and physiological data was developed via the constraint-based modeling approach. Evaluation of the rates of proton production and consumption in the extracellular and cytoplasmic compartments revealed that energy conservation with extracellular electron acceptors, such as Fe(III), was limited relative to that associated with intracellular acceptors. This limitation was attributed to lack of cytoplasmic proton consumption during reduction of extracellular electron acceptors. Model-based analysis of the metabolic cost of producing an extracellular electron shuttle to promote electron transfer to insoluble Fe(III) oxides demonstrated why Geobacter species, which do not produce shuttles, have an energetic advantage over shuttle-producing Fe(III) reducers in subsurface environments. In silico analysis also revealed that the metabolic network of G. sulfurreducens could synthesize amino acids more efficiently than that of Escherichia coli due to the presence of a pyruvate-ferredoxin oxidoreductase, which catalyzes synthesis of pyruvate from acetate and carbon dioxide in a single step. In silico phenotypic analysis of deletion mutants demonstrated the capability of the model to explore the flexibility of G. sulfurreducens central metabolism and correctly predict mutant phenotypes. These results demonstrate that iterative modeling coupled with experimentation can accelerate the understanding of the physiology of poorly studied but environmentally relevant organisms and may help optimize their practical applications.

Bibliography

Mahadevan, R., Bond, D. R., Butler, J. E., Esteve-Nuñez, A., Coppi, M. V., Palsson, B. O., Schilling, C. H., & Lovley, D. R. (2006). Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling. Applied and Environmental Microbiology, 72(2), 1558–1568.

Authors 8
  1. R. Mahadevan (first)
  2. D. R. Bond (additional)
  3. J. E. Butler (additional)
  4. A. Esteve-Nuñez (additional)
  5. M. V. Coppi (additional)
  6. B. O. Palsson (additional)
  7. C. H. Schilling (additional)
  8. D. R. Lovley (additional)
References 91 Referenced 270
  1. 10.1093/nar/25.17.3389
  2. 10.1021/es9704949
  3. 10.1128/AEM.69.10.5884-5891.2003
  4. 10.1016/S0076-6879(57)03350-9
  5. 10.1016/S0006-3495(02)75150-3
  6. 10.1046/j.1432-1033.2002.02842.x
  7. 10.1016/S0167-7799(97)01067-6
  8. 10.1126/science.1066771
  9. 10.1128/AEM.69.3.1548-1555.2003
  10. 10.1101/gr.1926504
  11. 10.1128/JB.188.2.450-455.2006
  12. 10.1128/aem.60.10.3752-3759.1994
  13. 10.1128/jb.173.8.2704-2706.1991
  14. 10.1006/anae.2000.0333
  15. 10.1038/416767a
  16. Chvatal V. 1983. Linear programming. W. H. Freeman New York N.Y.
  17. 10.1128/AEM.68.8.3878-3885.2002
  18. Coppi M. V. C. Leang F. Kaufmann R. A. O'Neil D. R. Bond and D. R. Lovley. Genetic analysis of a putative soluble Fe(III) reductase from Geobacter sulfurreducens. Submitted for publication.
  19. 10.1128/JB.186.10.3022-3028.2004
  20. 10.1128/AEM.64.6.2232-2236.1998
  21. 10.1016/S0968-0004(00)01754-0
  22. Cronan, J. E., and D. Laporte. 1996. Tricarboxylic acid cycle and glyoxalate bypass, p. 189-198. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C. / Escherichia coli and Salmonella: cellular and molecular biology (1996)
  23. 10.1006/mben.1998.0112
  24. 10.1101/gr.2250904
  25. 10.1074/jbc.274.25.17410
  26. 10.1186/1471-2105-1-1
  27. 10.1073/pnas.97.10.5528
  28. 10.1128/JB.186.9.2897-2899.2004
  29. 10.1111/j.1462-2920.2005.00731.x
  30. 10.1073/pnas.2235812100
  31. 10.1016/j.bbrc.2005.03.015
  32. 10.1016/S0021-9258(18)64849-5
  33. 10.1016/S0014-5793(00)01867-6
  34. 10.1007/s002030000208
  35. 10.1007/BF00428855
  36. 10.1016/0005-2728(94)90226-7
  37. 10.1093/nar/30.1.402
  38. 10.1016/0014-5793(96)00529-7
  39. Herbert, D., P. J. Phipps, and R. E. Strange. 1971. Chemical analysis of microbial cells. Methods Enzymol.5B:210-234. / Methods Enzymol. (1971)
  40. 10.1007/PL00000796
  41. 10.1128/AEM.68.5.2300-2306.2002
  42. 10.1126/science.1070633
  43. 10.1093/nar/gkh063
  44. 10.1016/j.copbio.2003.08.001
  45. 10.1007/BF00245358
  46. 10.1016/S0098-1354(00)00323-9
  47. Lehninger A. L. M. M. Cox and D. L. Nelson. 1993. Principles of biochemistry. Worth Publishers New York N.Y.
  48. 10.1128/AEM.70.4.2525-2528.2004
  49. 10.1128/JB.181.24.7647-7649.1999
  50. Lloyd, J. R., C. Leang, A. L. Hodges-Myerson, M. V. Coppi, S. Cuifo, B. Methe, S. J. Sandler, and D. R. Lovley. 2003. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens.Biochem. J.369:153-161. / Biochem. J. (2003)
  51. Lloyd, J. R., and L. E. Macaskie. 2000. Bioremediation of radioactive metals, p. 272-327. In D. R. Lovley (ed.), Environmental microbe-metal interactions. ASM Press, Washington, D.C. / Environmental microbe-metal interactions (2000)
  52. 10.1128/AEM.66.9.3743-3749.2000
  53. 10.1128/mr.55.2.259-287.1991
  54. 10.1038/nrmicro731
  55. Lovley, D. R., and R. T. Anderson. 2000. Influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface. Hydogeol. J.8:77-88. / Hydogeol. J. (2000)
  56. 10.1038/339297a0
  57. 10.1007/BF00290916
  58. 10.1016/S0065-2911(04)49005-5
  59. 10.1038/350413a0
  60. 10.1111/j.1574-6968.2000.tb09063.x
  61. 10.1016/j.ymben.2003.09.002
  62. 10.1126/science.1088727
  63. 10.1128/AEM.70.9.5415-5425.2004
  64. Neidhardt F. J. L. Ingraham and M. Shaechter. 1990. Physiology of the bacterial cell. Sinauer Associates Inc. Sunderland MA.
  65. Neidhardt, F., and H. E. Umbarger. 1996. Chemical composition of Escherichia coli, p. 13-16. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C. / Escherichia coli and Salmonella: cellular and molecular biology (1996)
  66. Neijssel, O. M., M. J. Teixeria de Mattos, and D. W. Tempest. 1996. Growth yield and energy distribution, p. 1683-1692. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C. / Escherichia coli and Salmonella: cellular and molecular biology (1996)
  67. 10.1128/AEM.68.5.2294-2299.2002
  68. 10.1080/01490450252864253
  69. 10.1038/35011098
  70. 10.1128/AEM.70.5.3091-3095.2004
  71. 10.1093/nar/28.1.123
  72. 10.1007/BF00454960
  73. 10.1098/rspb.1965.0069
  74. 10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J
  75. 10.1002/(SICI)1097-0290(19981020)60:2<230::AID-BIT10>3.0.CO;2-Q
  76. 10.1016/S0006-3495(02)75297-1
  77. 10.1016/S0167-7799(03)00030-1
  78. 10.1038/nature00917
  79. Reed, J. L., T. D. Vo, C. H. Schilling, and B. Palsson. 2003. Escherichia coli iJR904: an expanded genome-scale model of E. coli K-12. Genome Biol.4:R54.1-R54.12. / Genome Biol. (2003)
  80. 10.1038/nature03661
  81. 10.1046/j.1462-2920.2002.00352.x
  82. 10.1128/JB.184.16.4582-4593.2002
  83. 10.1016/S0076-6879(57)03442-4
  84. 10.1046/j.1432-1327.2001.02202.x
  85. 10.1016/0003-2697(85)90442-7
  86. 10.1128/JB.182.20.5757-5764.2000
  87. 10.1038/nbt1094-994
  88. 10.1128/AEM.64.2.775-778.1998
  89. 10.1021/bi027158b
  90. 10.1073/pnas.252630999
  91. 10.1126/science.1106974
Dates
Type When
Created 19 years, 7 months ago (Feb. 3, 2006, 4:18 p.m.)
Deposited 3 years, 6 months ago (Feb. 23, 2022, 10:37 a.m.)
Indexed 37 minutes ago (Sept. 4, 2025, 2:43 a.m.)
Issued 19 years, 7 months ago (Feb. 1, 2006)
Published 19 years, 7 months ago (Feb. 1, 2006)
Published Print 19 years, 7 months ago (Feb. 1, 2006)
Funders 0

None

@article{Mahadevan_2006, title={Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling}, volume={72}, ISSN={1098-5336}, url={http://dx.doi.org/10.1128/aem.72.2.1558-1568.2006}, DOI={10.1128/aem.72.2.1558-1568.2006}, number={2}, journal={Applied and Environmental Microbiology}, publisher={American Society for Microbiology}, author={Mahadevan, R. and Bond, D. R. and Butler, J. E. and Esteve-Nuñez, A. and Coppi, M. V. and Palsson, B. O. and Schilling, C. H. and Lovley, D. R.}, year={2006}, month=feb, pages={1558–1568} }