Abstract
ABSTRACTPrevious studies have shown that members of the familyGeobacteraceaethat attach to the anodes of sediment fuel cells are directly involved in harvesting electricity by oxidizing organic compounds to carbon dioxide and transferring the electrons to the anode. In order to learn more about this process, microorganisms from the anode surface of a marine sediment fuel cell were enriched and isolated with Fe(III) oxide. Two unique marine isolates were recovered, strains A1Tand A2. They are gram-negative, nonmotile rods, with abundantc-type cytochromes. Phylogenetic analysis of the 16S rRNA,recA,gyrB,fusA,rpoB, andnifDgenes indicated that strains A1Tand A2 represent a unique phylogenetic cluster within theGeobacteraceae. Both strains were able to grow with an electrode serving as the sole electron acceptor and transferred ca. 90% of the electrons available in their organic electron donors to the electrodes. These organisms are the first psychrotolerant members of theGeobacteraceaereported thus far and can grow at temperatures between 4 and 30°C, with an optimum temperature of 22°C. Strains A1Tand A2 can utilize a wide range of traditional electron acceptors, including all forms of soluble and insoluble Fe(III) tested, anthraquinone 2,6-disulfonate, and S0. In addition to acetate, both strains can utilize a number of other organic acids, amino acids, long-chain fatty acids, and aromatic compounds to support growth with Fe(III) nitrilotriacetic acid as an electron acceptor. The metabolism of these organisms differs in that only strain A1Tcan use acetoin, ethanol, and hydrogen as electron donors, whereas only strain A2 can use lactate, propionate, and butyrate. The nameGeopsychrobacter electrodiphilusgen. nov., sp. nov., is proposed for strains A1Tand A2, with strain A1T(ATCC BAA-880T; DSM 16401T; JCM 12469) as the type strain. Strains A1Tand A2 (ATCC BAA-770; JCM 12470) represent the first organisms recovered from anodes that can effectively couple the oxidation of organic compounds to an electrode. Thus, they may serve as important model organisms for further elucidation of the mechanisms of microbe-electrode electron transfer in sediment fuel cells.
Bibliography
Holmes, D. E., Nicoll, J. S., Bond, D. R., & Lovley, D. R. (2004). Potential Role of a Novel Psychrotolerant Member of the FamilyGeobacteraceae,Geopsychrobacter electrodiphilusgen. nov., sp. nov., in Electricity Production by a Marine Sediment Fuel Cell. Applied and Environmental Microbiology, 70(10), 6023â6030.
References
46
Referenced
176
- Achenbach L. and C. Woese. 1995. 16S and 23S rRNA-like primers p. 201-203. In F. T. Robb A. R. Place K. R. Sowers H. J. Schreier S. DasSarma and E. M. Fleischmann (ed.) Archaea : a laboratory manual. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.
10.1016/S0022-2836(05)80360-2
10.1128/AEM.56.6.1919-1925.1990
10.1126/science.1066771
10.1128/AEM.69.3.1548-1555.2003
10.1099/00207713-47-4-1040
10.1038/nbt867
10.1006/anae.1998.0172
10.1007/BF02529738
10.1016/0141-0229(95)00132-8
10.1128/aem.56.9.2771-2776.1990
10.1007/BF00248435
10.1007/BF00165883
10.1099/ijs.0.02298-0
- Habermann, W., and E. H. Pommer. 1990. Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol.35:128-133. / Appl. Microbiol. Biotechnol. (1990)
10.1128/AEM.70.2.1234-1237.2004
- Microb. Ecol.
10.1099/ijs.0.02958-0
10.1128/AEM.69.5.2985-2993.2003
- Kim, B. H., H. J. Kim, M. S. Hyun, and D. S. Park. 1999. Direct electrode reaction of Fe(III) reducing bacterium, Shewenella putrefaciens. J. Microbiol. Biotechnol.9:127-131. / J. Microbiol. Biotechnol. (1999)
- Kim, H. J., M. S. Hyun, I. S. Chang, and B. H. Kim. 1999. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol.9:365-367. / J. Microbiol. Biotechnol. (1999)
10.1016/S0141-0229(01)00478-1
10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M
10.1099/00207713-49-4-1631
- Lane, D. L. 1991. 16S/23S rRNA sequencing, p. 115-175. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. Wiley, Chichester, England. / Nucleic acid techniques in bacterial systematics (1991)
10.1073/pnas.82.20.6955
10.1016/S0378-1097(03)00356-2
10.1099/00207713-49-4-1341
10.1046/j.1462-2920.1999.00009.x
10.1128/aem.51.4.683-689.1986
- The Prokaryotes 2000
10.1016/S0065-2911(04)49005-5
10.1128/aem.54.6.1472-1480.1988
10.1128/aem.53.7.1536-1540.1987
10.1093/nar/29.1.173
10.1023/A:1018441127733
10.1128/AEM.65.7.2912-2917.1999
10.1128/AEM.66.4.1292-1297.2000
10.1006/anae.2001.0399
10.1016/0076-6879(90)83007-V
10.1016/S0378-1097(03)00354-9
10.1021/es001223s
-
Roller, S. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, and C. F. Thurston. 1984. Electron-transfer coupling in microbial fuel cells. 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J. Chem. Tech. Biotechnol.34B:3-12.
(
10.1002/jctb.280340103
) / J. Chem. Tech. Biotechnol. (1984) - Swofford D. L. 1998. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates Sunderland Mass.
10.1038/nbt716
10.1111/j.1574-6941.1999.tb00664.x
Dates
Type | When |
---|---|
Created | 20 years, 11 months ago (Oct. 4, 2004, 4:41 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 14, 2024, 9:13 a.m.) |
Indexed | 1 day, 20 hours ago (Sept. 4, 2025, 10:20 a.m.) |
Issued | 20 years, 11 months ago (Oct. 1, 2004) |
Published | 20 years, 11 months ago (Oct. 1, 2004) |
Published Print | 20 years, 11 months ago (Oct. 1, 2004) |
@article{Holmes_2004, title={Potential Role of a Novel Psychrotolerant Member of the FamilyGeobacteraceae,Geopsychrobacter electrodiphilusgen. nov., sp. nov., in Electricity Production by a Marine Sediment Fuel Cell}, volume={70}, ISSN={1098-5336}, url={http://dx.doi.org/10.1128/aem.70.10.6023-6030.2004}, DOI={10.1128/aem.70.10.6023-6030.2004}, number={10}, journal={Applied and Environmental Microbiology}, publisher={American Society for Microbiology}, author={Holmes, Dawn E. and Nicoll, Julie S. and Bond, Daniel R. and Lovley, Derek R.}, year={2004}, month=oct, pages={6023–6030} }