Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science's STKE (221)
Abstract

Mechanosensitive ion channels are the primary transducers that convert mechanical force into an electrical or chemical signal in hearing, touch, and other mechanical senses. Unlike vision, olfaction, and some types of taste, which all use similar kinds of primary heterotrimeric GTP-binding protein–coupled receptors, mechanosensation relies on diverse types of transducer molecules. Unrelated types of channels can be used for the perception of various mechanical stimuli, not only in distant groups of organisms, but also in separate locations of the same organism. The extreme sensitivity of the transduction mechanism in the auditory system, which relies on an elaborate structure of rigid cilia, filamentous links, and molecular motors to focus force on transduction channels, contrasts with that of the bacterial channel MscL, which is opened by high lateral tension in the membrane and fulfills a safety-valve rather than a sensory function. The spatial scales of conformational movement and force in these two systems are described, and are shown to be consistent with a general physical description of mechanical channel gating. We outline the characteristics of several types of mechanosensitive channels and the functional contexts in which they participate in signaling and cellular regulation in sensory and nonsensory cells.

Bibliography

Sukharev, S., & Corey, D. P. (2004). Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms. Science’s STKE, 2004(219).

Authors 2
  1. Sergei Sukharev (first)
  2. David P. Corey (additional)
References 222 Referenced 134
  1. 10.1146/annurev.neuro.24.1.779
  2. 10.1146/annurev.physiol.64.082701.102229
  3. 10.1038/35093026
  4. 10.1038/35093011
  5. 10.1074/jbc.R100060200
  6. F. Sachs, Stretch-sensitive ion channels: An update. Soc. Gen. Physiol. Ser. 47, 241–260 (1992). / Soc. Gen. Physiol. Ser. (1992)
  7. 10.1074/jbc.M101500200
  8. 10.1016/S0945-053X(99)00039-6
  9. F. J. Alenghat, D. E. Ingber, Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins. Sci. STKE 2002, pe6 (2002). / Sci. STKE (2002)
  10. 10.1113/jphysiol.2001.013469
  11. 10.1016/0166-2236(94)90125-2
  12. 10.1523/JNEUROSCI.03-05-00942.1983
  13. 10.1016/S0006-3495(91)82329-3
  14. A. J. Hudspeth Hair bundle mechanics and a model for mechanoelectrical adaptation by hair cells. In Sensory Transduction D. P. Corey S. Roper Eds. (Rockefeller Univ. Press New York 1992) pp. 357–370.
  15. 10.1016/0301-0082(85)90014-0
  16. 10.1016/0896-6273(91)90343-X
  17. 10.1016/0896-6273(88)90139-0
  18. 10.1073/pnas.97.24.13336
  19. 10.1038/84758
  20. 10.1038/361467a0
  21. 10.1038/367463a0
  22. 10.1073/pnas.94.4.1459
  23. 10.1074/jbc.271.18.10433
  24. 10.1074/jbc.271.14.7879
  25. 10.1093/emboj/17.2.344
  26. 10.1074/jbc.273.2.681
  27. 10.1074/jbc.274.38.27281
  28. 10.1523/JNEUROSCI.05-04-00956.1985
  29. 10.1146/annurev.physiol.65.092101.142659
  30. 10.1016/S0896-6273(00)80035-5
  31. 10.1126/science.2646709
  32. 10.1146/annurev.genet.36.061802.101708
  33. 10.1038/4151039a
  34. 10.1016/0012-1606(81)90459-0
  35. 10.1016/S0896-6273(00)80503-6
  36. 10.1523/JNEUROSCI.21-08-02678.2001
  37. 10.1038/35039512
  38. 10.1016/S0896-6273(01)00547-5
  39. 10.1152/ajprenal.00143.2002
  40. 10.1038/35093032
  41. 10.1016/S0896-6273(00)80661-3
  42. 10.1016/S0006-8993(00)02831-6
  43. 10.1083/jcb.140.1.143
  44. 10.1016/S0960-9822(03)00596-7
  45. 10.1038/224285a0
  46. 10.1038/258084a0
  47. 10.1016/0896-6273(89)90069-X
  48. M. Gupta D. P. Corey unpublished data.
  49. 10.1146/annurev.med.52.1.93
  50. 10.1038/ng0697-179
  51. 10.1038/35050128
  52. 10.1016/S0960-9822(02)00877-1
  53. 10.1097/01.ASN.0000029587.47950.25
  54. 10.1007/s00232-001-0075-4
  55. 10.1038/ng1076
  56. M. M. Barr, P. W. Sternberg, A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999). / Nature (1999)
  57. 10.1159/000066650
  58. 10.1016/S0960-9822(01)00423-7
  59. 10.1073/pnas.141036198
  60. 10.1083/jcb.200111004
  61. 10.1073/pnas.1230540100
  62. M. Kernan, D. Cowan, C. Zuker, Genetic dissection of mechanosensory transduction: Mechanoreception-defective mutations of. Drosophila. Neuron 12, 1195–1206 (1994). / Drosophila. Neuron (1994)
  63. 10.1126/science.287.5461.2229
  64. 10.1016/S0143-4160(03)00062-9
  65. 10.1126/science.1084370
  66. 10.1523/JNEUROSCI.23-10-04054.2003
  67. D. P. Corey unpublished data.
  68. 10.1038/35036318
  69. 10.1016/S0092-8674(00)00143-4
  70. 10.1016/S0014-5793(00)02212-2
  71. 10.1152/physiolgenomics.2001.4.3.165
  72. 10.1074/jbc.M302561200
  73. 10.1152/ajpcell.00559.2002
  74. 10.1007/s00424-003-1028-9
  75. 10.1074/jbc.M208277200
  76. 10.1016/0896-6273(95)90224-4
  77. 10.1101/lm.4.2.179
  78. 10.1523/JNEUROSCI.17-21-08259.1997
  79. 10.1073/pnas.90.6.2227
  80. 10.1016/S0896-6273(02)00757-2
  81. D. F. Eberl, R. W. Hardy, M. J. Kernan, Genetically similar transduction mechanisms for touch and hearing in. Drosophila. J. Neurosci. 20, 5981–5988 (2000). (10.1523/JNEUROSCI.20-16-05981.2000) / Drosophila. J. Neurosci. (2000)
  82. C. Kim Y. Chung Z. Gong J. Kim W. Son D. Park D. Shin S. Choi H. Lee J. Hirsh M. J. Kernan Nanchung and Inactive are TRPV channel subunits required for hearing. Paper presented at the 44th Annual Drosophila Research Conference Chicago 5 to 9 March 2003.
  83. 10.1038/nature01733
  84. 10.1016/S0092-8674(03)00272-1
  85. 10.1016/S0092-8674(03)00158-2
  86. 10.1007/BF01872883
  87. 10.1007/BFb0004985
  88. 10.1152/physrev.2001.81.2.685
  89. O. P. Hamill, D. W. McBride, Jr., The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48, 231–252 (1996). / Pharmacol. Rev. (1996)
  90. 10.1113/jphysiol.1984.sp015317
  91. 10.1113/jphysiol.1994.sp020440
  92. 10.1113/jphysiol.2001.013043
  93. 10.1152/ajpcell.2001.281.2.C690
  94. 10.1152/ajplegacy.1956.186.2.299
  95. 10.1161/01.CIR.81.3.1094
  96. 10.1016/S0008-6363(01)00194-8
  97. 10.1006/jmcc.1997.0392
  98. 10.1085/jgp.100.6.1021
  99. 10.1152/ajpheart.1992.262.4.H1110
  100. 10.1161/01.RES.72.1.225
  101. A. Ruknudin, F. Sachs, J. O. Bustamante, Stretch-activated ion channels in tissue-cultured chick heart. Am. J. Physiol. 264, H960–H972 (1993). / Am. J. Physiol. (1993)
  102. 10.2170/jjphysiol.42.957
  103. 10.1007/s002329900145
  104. 10.1007/s002320001023
  105. 10.1007/s002320001024
  106. 10.1085/jgp.115.5.583
  107. 10.1074/jbc.M202715200
  108. 10.1007/s00232-003-0637-8
  109. 10.1161/01.RES.72.5.973
  110. 10.1007/s004240050409
  111. M. C. Wellner, G. Isenberg, Properties of stretch-activated channels in myocytes from the guinea-pig urinary bladder. J. Physiol. 466, 213–227 (1993). (10.1113/jphysiol.1993.sp019717) / J. Physiol. (1993)
  112. 10.1113/jphysiol.1994.sp020373
  113. 10.1111/j.1469-7793.2000.t01-4-00003.x
  114. 10.1073/pnas.092654999
  115. 10.1152/ajpcell.1995.268.2.C458
  116. 10.1152/physrev.1995.75.3.519
  117. W. J. Sigurdson, F. Sachs, S. L. Diamond, Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am. J. Physiol. 264, H1745–H1752 (1993). / Am. J. Physiol. (1993)
  118. 10.1073/pnas.93.20.11253
  119. 10.1152/ajpcell.1993.264.4.C1037
  120. M. Sokabe, K. Naruse, S. Sai, T. Yamada, K. Kawakami, M. Inoue, K. Murase, M. Miyazu, Mechanotransduction and intracellular signaling mechanisms of stretch- induced remodeling in endothelial cells. Heart Vessels (suppl. 12), 191–193 (1997). / Heart Vessels (1997)
  121. 10.1016/S0008-6363(98)00030-3
  122. 10.1242/jcs.109.4.713
  123. 10.1016/S0008-6363(01)00476-X
  124. 10.1146/annurev.ph.57.030195.002001
  125. 10.1152/ajpcell.1996.270.3.C711
  126. 10.1085/jgp.111.5.623
  127. 10.1152/ajpcell.00245.2002
  128. 10.1146/annurev.physiol.59.1.601
  129. 10.1038/nn1124
  130. 10.1038/364341a0
  131. 10.1016/S0166-2236(00)01810-5
  132. 10.1093/emboj/17.15.4283
  133. 10.1074/jbc.274.38.26691
  134. 10.1016/S0955-0674(00)00231-3
  135. D. H. Vandorpe, C. E. Morris, Stretch activation of the Aplysia S-channel. J. Membr. Biol. 127, 205–214 (1992). / J. Membr. Biol. (1992)
  136. Q. Zhi, K. Naruse, M. Sokabe, Ionic amphipaths affect the gating of a stretch activated BK channel (SAKca) cloned from chick heart. Biophys. J. 84, 234a (2003). / Biophys. J. (2003)
  137. 10.1002/(SICI)1098-1136(199611)18:3<161::AID-GLIA1>3.0.CO;2-2
  138. 10.1126/science.1706535
  139. 10.1111/j.1469-7793.2000.00101.x
  140. 10.1111/j.1469-7793.2000.t01-1-00117.x
  141. 10.1152/ajpcell.1999.276.2.C318
  142. 10.1073/pnas.96.25.14594
  143. 10.1007/s002320010040
  144. 10.1016/S0981-9428(00)00172-8
  145. 10.1128/jb.174.14.4811-4819.1992
  146. 10.1016/0966-842X(94)90127-9
  147. 10.1128/MMBR.63.1.230-262.1999
  148. D. J. Cosgrove, R. Hedrich, Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186, 143–153 (1991). / Planta (1991)
  149. 10.1111/j.1365-313X.1993.tb00013.x
  150. 10.1016/S0006-3495(91)82170-1
  151. 10.1126/science.1716786
  152. 10.1126/science.2460920
  153. 10.1385/CBB:34:3:349
  154. 10.1146/annurev.physiol.59.1.633
  155. 10.1128/MMBR.67.1.66-85.2003
  156. C. Brownlee, F. Berger, F. Y. Bouget, Signals involved in control of polarity, cell fate and developmental pattern in plants. Symp. Soc. Exp. Biol. 51, 33–41 (1998). / Symp. Soc. Exp. Biol. (1998)
  157. 10.1038/368265a0
  158. 10.1093/emboj/18.7.1730
  159. 10.1046/j.1365-2958.2002.02764.x
  160. 10.1093/emboj/cdf537
  161. 10.1016/S0006-3495(93)81044-0
  162. 10.1074/jbc.M202497200
  163. 10.1016/S0006-3495(02)75169-2
  164. 10.1073/pnas.84.8.2297
  165. 10.1038/348261a0
  166. 10.1038/nsb827
  167. 10.1126/science.282.5397.2220
  168. 10.1126/science.1077945
  169. 10.1002/j.1460-2075.1996.tb00860.x
  170. 10.1073/pnas.93.21.11652
  171. 10.1007/s002329900212
  172. 10.1016/S0006-3495(97)78223-7
  173. 10.1085/jgp.113.4.525
  174. 10.1085/jgp.20028768
  175. 10.1016/S0969-2126(99)80061-6
  176. 10.1073/pnas.95.19.11471
  177. 10.1016/S0006-3495(99)77037-2
  178. 10.1016/S0006-3495(01)76192-9
  179. 10.1073/pnas.082092599
  180. 10.1016/S0006-3495(01)75751-7
  181. 10.1038/35055559
  182. 10.1038/nsb828
  183. 10.1074/jbc.M302892200
  184. 10.1038/nature00992
  185. 10.1016/S0006-3495(01)76181-4
  186. 10.1016/S0006-3495(03)74637-2
  187. 10.1016/S0006-3495(03)75038-3
  188. C. S. Chiang A. Anishkin S. Sukharev Gating of the large mechanosensitive channel in situ. Estimation of the spatial scale of the transition from channel population responses. Biophys. J. in press.
  189. 10.1074/jbc.275.2.1015
  190. A. Pleumsamran, D. Kim, Membrane stretch augments the cardiac muscarinic K+ channel activity. J. Membr. Biol. 148, 287–297 (1995). / J. Membr. Biol. (1995)
  191. 10.1016/0896-6273(94)90032-9
  192. 10.1007/s002329900124
  193. 10.1016/S0006-3495(01)76237-6
  194. 10.1152/ajpcell.00140.2002
  195. 10.1016/S0006-3495(02)75267-3
  196. 10.1016/S0092-8674(02)00670-0
  197. 10.1096/fj.02-0238hyp
  198. 10.1523/JNEUROSCI.03-05-00962.1983
  199. 10.1146/annurev.bb.17.060188.000531
  200. 10.1016/0378-5955(92)90062-R
  201. 10.1063/1.1749836
  202. B. Hille Ion Channels of Excitable Membranes (Sinauer Sunderland MA 2001).
  203. 10.1152/jn.1992.68.3.927
  204. 10.1073/pnas.210389497
  205. 10.1016/0092-8674(81)90497-9
  206. E. A. Evans, R. Skalak, Mechanics and thermodynamics of biomembranes: Part 1. CRC Crit. Rev. Bioeng. 3, 181–330 (1979). / CRC Crit. Rev. Bioeng. (1979)
  207. E. A. Evans, R. Skalak, Mechanics and thermodynamics of biomembranes: Part 2. CRC Crit. Rev. Bioeng. 3, 331–418 (1979). / CRC Crit. Rev. Bioeng. (1979)
  208. 10.1016/S0006-3495(00)76295-3
  209. 10.1016/S0014-5793(97)00709-6
  210. 10.1021/bi9619841
  211. 10.1016/S0006-3495(98)77790-2
  212. 10.1073/pnas.072632899
  213. 10.1016/S0006-3495(99)77252-8
  214. 10.1016/S0304-4157(98)00015-X
  215. 10.1016/S1359-0294(00)00061-3
  216. 10.1016/S0009-3084(99)00054-7
  217. A. Ben-Shaul Molecular theory of chain packing elasticity and lipid-protein interaction in lipid bilayers. In Handbook of Physics of Biological Systems vol. 1: Structure and Dynamics of Membranes R. Lipowsky and E. Sackmann Eds. (Elsevier Amsterdam 1995) chap. 7 pp. 359–402. (10.1016/S1383-8121(06)80024-2)
  218. 10.1021/jp963911x
  219. 10.1126/science.273.5273.323
  220. 10.1146/annurev.neuro.20.1.567
  221. 10.1073/pnas.82.18.6153
  222. We appreciate discussions with G. M. G. Shepherd who contributed to an early version of this manuscript. Supported by NIH grants NS39314-01 (S.S.) and DC00304 (D.P.C.). D.P.C. is an Investigator of the Howard Hughes Medical Institute.
Dates
Type When
Created 21 years, 5 months ago (March 23, 2004, 3:12 a.m.)
Deposited 1 year, 7 months ago (Jan. 16, 2024, 12:47 p.m.)
Indexed 4 weeks, 2 days ago (Aug. 2, 2025, 12:44 a.m.)
Issued 21 years, 6 months ago (Feb. 10, 2004)
Published 21 years, 6 months ago (Feb. 10, 2004)
Published Print 21 years, 6 months ago (Feb. 10, 2004)
Funders 0

None

@article{Sukharev_2004, title={Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms}, volume={2004}, ISSN={1525-8882}, url={http://dx.doi.org/10.1126/stke.2192004re4}, DOI={10.1126/stke.2192004re4}, number={219}, journal={Science’s STKE}, publisher={American Association for the Advancement of Science (AAAS)}, author={Sukharev, Sergei and Corey, David P.}, year={2004}, month=feb }