Abstract
Mechanosensitive ion channels are the primary transducers that convert mechanical force into an electrical or chemical signal in hearing, touch, and other mechanical senses. Unlike vision, olfaction, and some types of taste, which all use similar kinds of primary heterotrimeric GTP-binding protein–coupled receptors, mechanosensation relies on diverse types of transducer molecules. Unrelated types of channels can be used for the perception of various mechanical stimuli, not only in distant groups of organisms, but also in separate locations of the same organism. The extreme sensitivity of the transduction mechanism in the auditory system, which relies on an elaborate structure of rigid cilia, filamentous links, and molecular motors to focus force on transduction channels, contrasts with that of the bacterial channel MscL, which is opened by high lateral tension in the membrane and fulfills a safety-valve rather than a sensory function. The spatial scales of conformational movement and force in these two systems are described, and are shown to be consistent with a general physical description of mechanical channel gating. We outline the characteristics of several types of mechanosensitive channels and the functional contexts in which they participate in signaling and cellular regulation in sensory and nonsensory cells.
References
222
Referenced
134
10.1146/annurev.neuro.24.1.779
10.1146/annurev.physiol.64.082701.102229
10.1038/35093026
10.1038/35093011
10.1074/jbc.R100060200
- F. Sachs, Stretch-sensitive ion channels: An update. Soc. Gen. Physiol. Ser. 47, 241–260 (1992). / Soc. Gen. Physiol. Ser. (1992)
10.1074/jbc.M101500200
10.1016/S0945-053X(99)00039-6
- F. J. Alenghat, D. E. Ingber, Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins. Sci. STKE 2002, pe6 (2002). / Sci. STKE (2002)
10.1113/jphysiol.2001.013469
10.1016/0166-2236(94)90125-2
10.1523/JNEUROSCI.03-05-00942.1983
10.1016/S0006-3495(91)82329-3
- A. J. Hudspeth Hair bundle mechanics and a model for mechanoelectrical adaptation by hair cells. In Sensory Transduction D. P. Corey S. Roper Eds. (Rockefeller Univ. Press New York 1992) pp. 357–370.
10.1016/0301-0082(85)90014-0
10.1016/0896-6273(91)90343-X
10.1016/0896-6273(88)90139-0
10.1073/pnas.97.24.13336
10.1038/84758
10.1038/361467a0
10.1038/367463a0
10.1073/pnas.94.4.1459
10.1074/jbc.271.18.10433
10.1074/jbc.271.14.7879
10.1093/emboj/17.2.344
10.1074/jbc.273.2.681
10.1074/jbc.274.38.27281
10.1523/JNEUROSCI.05-04-00956.1985
10.1146/annurev.physiol.65.092101.142659
10.1016/S0896-6273(00)80035-5
10.1126/science.2646709
10.1146/annurev.genet.36.061802.101708
10.1038/4151039a
10.1016/0012-1606(81)90459-0
10.1016/S0896-6273(00)80503-6
10.1523/JNEUROSCI.21-08-02678.2001
10.1038/35039512
10.1016/S0896-6273(01)00547-5
10.1152/ajprenal.00143.2002
10.1038/35093032
10.1016/S0896-6273(00)80661-3
10.1016/S0006-8993(00)02831-6
10.1083/jcb.140.1.143
10.1016/S0960-9822(03)00596-7
10.1038/224285a0
10.1038/258084a0
10.1016/0896-6273(89)90069-X
- M. Gupta D. P. Corey unpublished data.
10.1146/annurev.med.52.1.93
10.1038/ng0697-179
10.1038/35050128
10.1016/S0960-9822(02)00877-1
10.1097/01.ASN.0000029587.47950.25
10.1007/s00232-001-0075-4
10.1038/ng1076
- M. M. Barr, P. W. Sternberg, A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999). / Nature (1999)
10.1159/000066650
10.1016/S0960-9822(01)00423-7
10.1073/pnas.141036198
10.1083/jcb.200111004
10.1073/pnas.1230540100
- M. Kernan, D. Cowan, C. Zuker, Genetic dissection of mechanosensory transduction: Mechanoreception-defective mutations of. Drosophila. Neuron 12, 1195–1206 (1994). / Drosophila. Neuron (1994)
10.1126/science.287.5461.2229
10.1016/S0143-4160(03)00062-9
10.1126/science.1084370
10.1523/JNEUROSCI.23-10-04054.2003
- D. P. Corey unpublished data.
10.1038/35036318
10.1016/S0092-8674(00)00143-4
10.1016/S0014-5793(00)02212-2
10.1152/physiolgenomics.2001.4.3.165
10.1074/jbc.M302561200
10.1152/ajpcell.00559.2002
10.1007/s00424-003-1028-9
10.1074/jbc.M208277200
10.1016/0896-6273(95)90224-4
10.1101/lm.4.2.179
10.1523/JNEUROSCI.17-21-08259.1997
10.1073/pnas.90.6.2227
10.1016/S0896-6273(02)00757-2
-
D. F. Eberl, R. W. Hardy, M. J. Kernan, Genetically similar transduction mechanisms for touch and hearing in. Drosophila. J. Neurosci. 20, 5981–5988 (2000).
(
10.1523/JNEUROSCI.20-16-05981.2000
) / Drosophila. J. Neurosci. (2000) - C. Kim Y. Chung Z. Gong J. Kim W. Son D. Park D. Shin S. Choi H. Lee J. Hirsh M. J. Kernan Nanchung and Inactive are TRPV channel subunits required for hearing. Paper presented at the 44th Annual Drosophila Research Conference Chicago 5 to 9 March 2003.
10.1038/nature01733
10.1016/S0092-8674(03)00272-1
10.1016/S0092-8674(03)00158-2
10.1007/BF01872883
10.1007/BFb0004985
10.1152/physrev.2001.81.2.685
- O. P. Hamill, D. W. McBride, Jr., The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48, 231–252 (1996). / Pharmacol. Rev. (1996)
10.1113/jphysiol.1984.sp015317
10.1113/jphysiol.1994.sp020440
10.1113/jphysiol.2001.013043
10.1152/ajpcell.2001.281.2.C690
10.1152/ajplegacy.1956.186.2.299
10.1161/01.CIR.81.3.1094
10.1016/S0008-6363(01)00194-8
10.1006/jmcc.1997.0392
10.1085/jgp.100.6.1021
10.1152/ajpheart.1992.262.4.H1110
10.1161/01.RES.72.1.225
- A. Ruknudin, F. Sachs, J. O. Bustamante, Stretch-activated ion channels in tissue-cultured chick heart. Am. J. Physiol. 264, H960–H972 (1993). / Am. J. Physiol. (1993)
10.2170/jjphysiol.42.957
10.1007/s002329900145
10.1007/s002320001023
10.1007/s002320001024
10.1085/jgp.115.5.583
10.1074/jbc.M202715200
10.1007/s00232-003-0637-8
10.1161/01.RES.72.5.973
10.1007/s004240050409
-
M. C. Wellner, G. Isenberg, Properties of stretch-activated channels in myocytes from the guinea-pig urinary bladder. J. Physiol. 466, 213–227 (1993).
(
10.1113/jphysiol.1993.sp019717
) / J. Physiol. (1993) 10.1113/jphysiol.1994.sp020373
10.1111/j.1469-7793.2000.t01-4-00003.x
10.1073/pnas.092654999
10.1152/ajpcell.1995.268.2.C458
10.1152/physrev.1995.75.3.519
- W. J. Sigurdson, F. Sachs, S. L. Diamond, Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am. J. Physiol. 264, H1745–H1752 (1993). / Am. J. Physiol. (1993)
10.1073/pnas.93.20.11253
10.1152/ajpcell.1993.264.4.C1037
- M. Sokabe, K. Naruse, S. Sai, T. Yamada, K. Kawakami, M. Inoue, K. Murase, M. Miyazu, Mechanotransduction and intracellular signaling mechanisms of stretch- induced remodeling in endothelial cells. Heart Vessels (suppl. 12), 191–193 (1997). / Heart Vessels (1997)
10.1016/S0008-6363(98)00030-3
10.1242/jcs.109.4.713
10.1016/S0008-6363(01)00476-X
10.1146/annurev.ph.57.030195.002001
10.1152/ajpcell.1996.270.3.C711
10.1085/jgp.111.5.623
10.1152/ajpcell.00245.2002
10.1146/annurev.physiol.59.1.601
10.1038/nn1124
10.1038/364341a0
10.1016/S0166-2236(00)01810-5
10.1093/emboj/17.15.4283
10.1074/jbc.274.38.26691
10.1016/S0955-0674(00)00231-3
- D. H. Vandorpe, C. E. Morris, Stretch activation of the Aplysia S-channel. J. Membr. Biol. 127, 205–214 (1992). / J. Membr. Biol. (1992)
- Q. Zhi, K. Naruse, M. Sokabe, Ionic amphipaths affect the gating of a stretch activated BK channel (SAKca) cloned from chick heart. Biophys. J. 84, 234a (2003). / Biophys. J. (2003)
10.1002/(SICI)1098-1136(199611)18:3<161::AID-GLIA1>3.0.CO;2-2
10.1126/science.1706535
10.1111/j.1469-7793.2000.00101.x
10.1111/j.1469-7793.2000.t01-1-00117.x
10.1152/ajpcell.1999.276.2.C318
10.1073/pnas.96.25.14594
10.1007/s002320010040
10.1016/S0981-9428(00)00172-8
10.1128/jb.174.14.4811-4819.1992
10.1016/0966-842X(94)90127-9
10.1128/MMBR.63.1.230-262.1999
- D. J. Cosgrove, R. Hedrich, Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186, 143–153 (1991). / Planta (1991)
10.1111/j.1365-313X.1993.tb00013.x
10.1016/S0006-3495(91)82170-1
10.1126/science.1716786
10.1126/science.2460920
10.1385/CBB:34:3:349
10.1146/annurev.physiol.59.1.633
10.1128/MMBR.67.1.66-85.2003
- C. Brownlee, F. Berger, F. Y. Bouget, Signals involved in control of polarity, cell fate and developmental pattern in plants. Symp. Soc. Exp. Biol. 51, 33–41 (1998). / Symp. Soc. Exp. Biol. (1998)
10.1038/368265a0
10.1093/emboj/18.7.1730
10.1046/j.1365-2958.2002.02764.x
10.1093/emboj/cdf537
10.1016/S0006-3495(93)81044-0
10.1074/jbc.M202497200
10.1016/S0006-3495(02)75169-2
10.1073/pnas.84.8.2297
10.1038/348261a0
10.1038/nsb827
10.1126/science.282.5397.2220
10.1126/science.1077945
10.1002/j.1460-2075.1996.tb00860.x
10.1073/pnas.93.21.11652
10.1007/s002329900212
10.1016/S0006-3495(97)78223-7
10.1085/jgp.113.4.525
10.1085/jgp.20028768
10.1016/S0969-2126(99)80061-6
10.1073/pnas.95.19.11471
10.1016/S0006-3495(99)77037-2
10.1016/S0006-3495(01)76192-9
10.1073/pnas.082092599
10.1016/S0006-3495(01)75751-7
10.1038/35055559
10.1038/nsb828
10.1074/jbc.M302892200
10.1038/nature00992
10.1016/S0006-3495(01)76181-4
10.1016/S0006-3495(03)74637-2
10.1016/S0006-3495(03)75038-3
- C. S. Chiang A. Anishkin S. Sukharev Gating of the large mechanosensitive channel in situ. Estimation of the spatial scale of the transition from channel population responses. Biophys. J. in press.
10.1074/jbc.275.2.1015
- A. Pleumsamran, D. Kim, Membrane stretch augments the cardiac muscarinic K+ channel activity. J. Membr. Biol. 148, 287–297 (1995). / J. Membr. Biol. (1995)
10.1016/0896-6273(94)90032-9
10.1007/s002329900124
10.1016/S0006-3495(01)76237-6
10.1152/ajpcell.00140.2002
10.1016/S0006-3495(02)75267-3
10.1016/S0092-8674(02)00670-0
10.1096/fj.02-0238hyp
10.1523/JNEUROSCI.03-05-00962.1983
10.1146/annurev.bb.17.060188.000531
10.1016/0378-5955(92)90062-R
10.1063/1.1749836
- B. Hille Ion Channels of Excitable Membranes (Sinauer Sunderland MA 2001).
10.1152/jn.1992.68.3.927
10.1073/pnas.210389497
10.1016/0092-8674(81)90497-9
- E. A. Evans, R. Skalak, Mechanics and thermodynamics of biomembranes: Part 1. CRC Crit. Rev. Bioeng. 3, 181–330 (1979). / CRC Crit. Rev. Bioeng. (1979)
- E. A. Evans, R. Skalak, Mechanics and thermodynamics of biomembranes: Part 2. CRC Crit. Rev. Bioeng. 3, 331–418 (1979). / CRC Crit. Rev. Bioeng. (1979)
10.1016/S0006-3495(00)76295-3
10.1016/S0014-5793(97)00709-6
10.1021/bi9619841
10.1016/S0006-3495(98)77790-2
10.1073/pnas.072632899
10.1016/S0006-3495(99)77252-8
10.1016/S0304-4157(98)00015-X
10.1016/S1359-0294(00)00061-3
10.1016/S0009-3084(99)00054-7
-
A. Ben-Shaul Molecular theory of chain packing elasticity and lipid-protein interaction in lipid bilayers. In Handbook of Physics of Biological Systems vol. 1: Structure and Dynamics of Membranes R. Lipowsky and E. Sackmann Eds. (Elsevier Amsterdam 1995) chap. 7 pp. 359–402.
(
10.1016/S1383-8121(06)80024-2
) 10.1021/jp963911x
10.1126/science.273.5273.323
10.1146/annurev.neuro.20.1.567
10.1073/pnas.82.18.6153
- We appreciate discussions with G. M. G. Shepherd who contributed to an early version of this manuscript. Supported by NIH grants NS39314-01 (S.S.) and DC00304 (D.P.C.). D.P.C. is an Investigator of the Howard Hughes Medical Institute.
Dates
Type | When |
---|---|
Created | 21 years, 5 months ago (March 23, 2004, 3:12 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 16, 2024, 12:47 p.m.) |
Indexed | 4 weeks, 2 days ago (Aug. 2, 2025, 12:44 a.m.) |
Issued | 21 years, 6 months ago (Feb. 10, 2004) |
Published | 21 years, 6 months ago (Feb. 10, 2004) |
Published Print | 21 years, 6 months ago (Feb. 10, 2004) |
@article{Sukharev_2004, title={Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms}, volume={2004}, ISSN={1525-8882}, url={http://dx.doi.org/10.1126/stke.2192004re4}, DOI={10.1126/stke.2192004re4}, number={219}, journal={Science’s STKE}, publisher={American Association for the Advancement of Science (AAAS)}, author={Sukharev, Sergei and Corey, David P.}, year={2004}, month=feb }