Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Two-dimensional materials with out-of-plane (OOP) ferroelectric and piezoelectric properties are highly desirable for the realization of ultrathin ferro- and piezoelectronic devices. We demonstrate unexpected OOP ferroelectricity and piezoelectricity in untwisted, commensurate, and epitaxial MoS 2 /WS 2 heterobilayers synthesized by scalable one-step chemical vapor deposition. We show d 33 piezoelectric constants of 1.95 to 2.09 picometers per volt that are larger than the natural OOP piezoelectric constant of monolayer In 2 Se 3 by a factor of ~6. We demonstrate the modulation of tunneling current by about three orders of magnitude in ferroelectric tunnel junction devices by changing the polarization state of MoS 2 /WS 2 heterobilayers. Our results are consistent with density functional theory, which shows that both symmetry breaking and interlayer sliding give rise to the unexpected properties without the need for invoking twist angles or moiré domains.

Bibliography

Rogée, L., Wang, L., Zhang, Y., Cai, S., Wang, P., Chhowalla, M., Ji, W., & Lau, S. P. (2022). Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science, 376(6596), 973–978.

Authors 8
  1. Lukas Rogée (first)
  2. Lvjin Wang (additional)
  3. Yi Zhang (additional)
  4. Songhua Cai (additional)
  5. Peng Wang (additional)
  6. Manish Chhowalla (additional)
  7. Wei Ji (additional)
  8. Shu Ping Lau (additional)
References 69 Referenced 243
  1. 10.1038/s41565-020-0682-9
  2. 10.1007/s12045-019-0797-1
  3. 10.1038/s41699-018-0063-5
  4. A. H. Meitzler IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176-1987 0_1 (1988). 10.1109/IEEESTD.1988.79638
  5. 10.1021/acsnano.8b02152
  6. 10.1016/j.nanoen.2020.105451
  7. 10.1039/C8NR04394A
  8. A. Weston et al. Interfacial Ferroelectricity in Marginally Twisted 2D Semiconductors. arXiv 2108.06489 (2021). (10.21203/rs.3.rs-798418/v1)
  9. 10.1126/science.abd3230
  10. 10.1126/science.abe8177
  11. 10.1038/s41565-021-01059-z
  12. 10.1039/C5CS00308C
  13. 10.1039/C8TC00500A
  14. 10.1021/nn500228r
  15. 10.1088/0022-3719/5/7/007
  16. 10.1103/PhysRevB.84.155413
  17. 10.1038/s41467-018-03869-7
  18. 10.1002/pssb.201451466
  19. Oxford Instruments Piezoresponse Force Microscopy with Asylum Research AFMs ; https://afm.oxinst.com/assets/uploads/products/asylum/documents/Piezoresponse-Force-Microscopy-AFM-web.pdf.
  20. 10.1021/acsami.8b06325
  21. 10.1107/S0108767386099920
  22. 10.1063/1.4962387
  23. 10.1038/s41586-020-2208-x
  24. 10.1063/1.4999199
  25. 10.1063/5.0004532
  26. 10.1063/5.0051940
  27. 10.1063/5.0006638
  28. 10.1038/s41928-020-0441-9
  29. 10.1038/s41467-019-09669-x
  30. 10.1126/science.1126230
  31. 10.1038/s41467-019-09650-8
  32. 10.1016/j.mattod.2018.01.031
  33. 10.1021/acsnano.7b02756
  34. 10.1016/j.nanoen.2016.02.046
  35. 10.1016/j.nanoen.2018.07.050
  36. 10.1021/nn5057673
  37. 10.1103/PhysRevB.50.17953
  38. 10.1103/PhysRevB.59.1758
  39. 10.1016/0927-0256(96)00008-0
  40. 10.1103/PhysRevB.54.11169
  41. 10.1103/PhysRevLett.92.246401
  42. 10.1103/PhysRevB.83.195131
  43. 10.1038/ncomms5475
  44. 10.1038/ncomms7293
  45. 10.1016/j.scib.2018.01.010
  46. 10.1039/C5NR06293D
  47. 10.1002/adma.201504572
  48. 10.1021/jz3012436
  49. 10.1103/PhysRevB.46.16067
  50. 10.1038/ncomms14956
  51. 10.1002/pssb.200301861
  52. 10.1021/acsnano.5b03394
  53. 10.1103/PhysRevB.47.1651
  54. 10.1016/j.jssc.2012.05.010
  55. 10.1007/s11467-014-0453-x
  56. 10.1038/s41586-018-0008-3
  57. 10.1103/PhysRevB.86.115409
  58. 10.1002/pssb.201900419
  59. 10.1038/s41565-020-0708-3
  60. 10.1016/j.nanoen.2019.03.076
  61. 10.1063/1.4764939
  62. 10.1021/nl901754t
  63. B. Di Bartolo R. C. Powell Crystal Symmetry Lattice Vibrations and Optical Spectroscopy of Solids (World Scientific 2013). (10.1142/9052)
  64. G. B. Arfken H. J. Weber F. E. Harris Mathematical Methods for Physicists (Elsevier ed. 7 2013).
  65. 10.1021/acs.jpcc.5b06428
  66. 10.1038/nature13792
  67. 10.1021/acsnano.7b03313
  68. 10.1016/0022-3697(76)90143-8
  69. 10.1021/jp503683h
Dates
Type When
Created 3 years, 2 months ago (May 26, 2022, 1:57 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 7:14 p.m.)
Indexed 2 minutes ago (Aug. 21, 2025, 6:50 a.m.)
Issued 3 years, 2 months ago (May 27, 2022)
Published 3 years, 2 months ago (May 27, 2022)
Published Print 3 years, 2 months ago (May 27, 2022)
Funders 0

None

@article{Rog_e_2022, title={Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides}, volume={376}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.abm5734}, DOI={10.1126/science.abm5734}, number={6596}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Rogée, Lukas and Wang, Lvjin and Zhang, Yi and Cai, Songhua and Wang, Peng and Chhowalla, Manish and Ji, Wei and Lau, Shu Ping}, year={2022}, month=may, pages={973–978} }