Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Stacking a ferroelectric Properties of layered van der Waals structures can depend sensitively on the stacking arrangement of constituent layers. This phenomenon has been exploited to engineer superconducting, correlated insulator, and magnetic states. Two groups now show that ferroelectricity can also be engineered through stacking: Parallel-stacked bilayers of hexagonal boron nitride exhibit ferroelectric switching even though the bulk material is not ferroelectric (see the Perspective by Tsymbal). To explore these phenomena, Yasuda et al. used transport measurements, whereas Vizner Stern et al. focused on atomic force microscopy. Science , abd3230 and abe8177, this issue p. 1458 and p. 1462 ; see also abi7296, p. 1389

Bibliography

Vizner Stern, M., Waschitz, Y., Cao, W., Nevo, I., Watanabe, K., Taniguchi, T., Sela, E., Urbakh, M., Hod, O., & Ben Shalom, M. (2021). Interfacial ferroelectricity by van der Waals sliding. Science, 372(6549), 1462–1466.

Authors 10
  1. M. Vizner Stern (first)
  2. Y. Waschitz (additional)
  3. W. Cao (additional)
  4. I. Nevo (additional)
  5. K. Watanabe (additional)
  6. T. Taniguchi (additional)
  7. E. Sela (additional)
  8. M. Urbakh (additional)
  9. O. Hod (additional)
  10. M. Ben Shalom (additional)
References 57 Referenced 527
  1. M. Lines A. Glass Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press 2001). (10.1093/acprof:oso/9780198507789.001.0001)
  2. 10.1063/1.2336999
  3. 10.1080/00150190590926490
  4. 10.1155/2013/187313
  5. 10.1103/RevModPhys.77.1083
  6. 10.1149/2.0081505jss
  7. 10.1021/acs.nanolett.5b00648
  8. D. D. Fong G. B. Stephenson S. K. Streiffer J. A. Eastman O. Aucielo P. H. Fuoss C. Thompson Ferroelectricity in ultrathin perovskite films. Science 304 1650–1653 (2004). 10.1126/science.1098252 (10.1126/science.1098252)
  9. 10.1038/s41586-020-2208-x
  10. F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, Z. Liu, Room-temperature ferroelectricity in CuInP 2 S 6 ultrathin flakes. Nat. Commun. 7, 1–6 (2016). / Nat. Commun. / Room-temperature ferroelectricity in CuInP 2 S 6 ultrathin flakes by Liu F. (2016)
  11. 10.1021/acsnano.7b02756
  12. 10.1103/PhysRevLett.111.036104
  13. 10.1038/165722b0
  14. 10.1103/PhysRevB.92.155438
  15. S. M. Gilbert T. Pham M. Dogan S. Oh B. Shevitski G. Schumm S. Liu P. Ercius S. Aloni M. L. Cohen A. Zettl . Alternative stacking sequences in hexagonal boron nitride. 2D Mater. 6 021006 (2019). 10.1088/2053-1583/ab0e24 (10.1088/2053-1583/ab0e24)
  16. 10.1021/nn901648q
  17. 10.1021/acs.jpcc.7b07091
  18. 10.1073/pnas.1309394110
  19. 10.1021/acsnano.0c00088
  20. 10.1038/s41565-020-0682-9
  21. 10.1038/s41563-019-0346-z
  22. T. A. Green, J. Weigle, Theorie du moire. Helv. Phys. Acta 21, 217 (1948). / Helv. Phys. Acta / Theorie du moire by Green T. A. (1948)
  23. 10.1038/nphys2954
  24. 10.1038/s41586-018-0704-z
  25. 10.1038/s41565-020-0708-3
  26. 10.1002/adma.201905504
  27. 10.1088/0370-1298/66/8/117
  28. 10.1103/PhysRevB.44.7787
  29. 10.1209/0295-5075/28/6/005
  30. 10.1103/PhysRevLett.105.046801
  31. 10.1021/ct200880m
  32. 10.1038/s41565-017-0042-6
  33. 10.1038/nmat3965
  34. 10.1038/s41565-020-0728-z
  35. T. I. Andersen G. Scuri A. Sushko K. de Greve J. Sung Y. Zhou D. S. Wild R. J. Gelly H. Heo K. Watanabe T. Taniguchi P. Kim H. Park M. D. Lukin Moiré excitons correlated with superlattice structure in twisted WSe2/WSe2 homobilayers. https://arxiv.org/abs/1912.06955 arXiv [cond-mat.mes-hall] (2019).
  36. 10.1038/nmat3786
  37. K. Yasuda X. Wang K. Watanabe T. Taniguchi P. Jarillo-Herrero Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372 1458–1462 (2021). 10.1126/science.abd3230 (10.1126/science.abd3230)
  38. 10.1038/s41467-020-20667-2
  39. 10.1038/s41586-020-2970-9
  40. M. Vizner Stern Y. Waschitz W. Cao I. Nevo K. Watanabe T. Taniguchi E. Sela M. Urbakh O. Hod M. Ben Shalom Replication Data for: Interfacial Ferroelectricity by van der Waals Sliding Zenodo (2021). (10.1126/science.abe8177)
  41. 10.1038/nnano.2010.172
  42. 10.1016/j.surfrep.2010.10.001
  43. 10.1063/1.4897966
  44. 10.1103/PhysRevB.64.245403
  45. 10.1103/PhysRevB.84.085409
  46. 10.1038/nnano.2016.151
  47. 10.1007/BF00533485
  48. M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman G. Scalmani V. Barone G. A. Petersson H. Nakatsuji X. Li M. Caricato A. Marenich J. Bloino B. G. Janesko R. Gomperts B. Mennucci H. P. Hratchian J. V. Ortiz A. F. Izmaylov J. L. Sonnenberg D. Williams-Young F. Ding F. Lipparini F. Egidi J. Goings B. Peng A. Petrone T. Henderson D. Ranasinghe V. G. Zakrzewski J. Gao N. Rega G. Zheng W. Liang M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai T. Vreven K. Throssell J. A. Montgomery Jr. J. E. Peralta F. Ogliaro M. Bearpark J. J. Heyd E. Brothers K. N. Kudin V. N. Staroverov T. Keith R. Kobayashi J. Normand K. Raghavachari A. Rendell J. C. Burant S. S. Iyengar J. Tomasi M. Cossi J. M. Millam M. Klene C. Adamo R. Cammi J. W. Ochterski R. L. Martin K. Morokuma O. Farkas J. B. Foresman D. J. Fox Gaussian 09 Rev. D.01 (Gaussian Inc. Wallingford CT 2016).
  49. 10.1063/1.3382344
  50. 10.1039/b508541a
  51. 10.1103/PhysRevB.54.11169
  52. 10.1103/PhysRevLett.77.3865
  53. 10.1103/PhysRevB.59.1758
  54. 10.1063/1.4865104
  55. P. Zhao C. Xiao W. Yao Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate. arXiv (2020) (available at https://arxiv.org/abs/2011.03933). (10.1038/s41699-021-00221-4)
  56. C. Kittel Introduction to Solid State Physics (Wiley ed. 8 2004).
  57. 10.1016/0008-6223(84)90010-1
Dates
Type When
Created 4 years, 2 months ago (June 10, 2021, 3:15 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 5:29 p.m.)
Indexed 54 minutes ago (Aug. 21, 2025, 6:01 a.m.)
Issued 4 years, 1 month ago (June 25, 2021)
Published 4 years, 1 month ago (June 25, 2021)
Published Print 4 years, 1 month ago (June 25, 2021)
Funders 12
  1. Army Research Office 10.13039/100000183

    Region: Americas

    gov (National government)

    Labels5
    1. U.S. Army Research Office
    2. United States Army Research Office
    3. U.S. Army Research Laboratory's Army Research Office
    4. ARL's Army Research Office
    5. ARO
    Awards1
    1. W911NF-20-1-0013
  2. Horizon 2020 Framework Programme 10.13039/100010661

    Region: Europe

    gov (National government)

    Labels13
    1. EU Framework Programme for Research and Innovation H2020
    2. Horizon 2020
    3. Rahmenprogramm Horizont 2020
    4. Programa Marco Horizonte 2020
    5. Programme-cadre Horizon 2020
    6. Programma quadro Orizzonte 2020
    7. Program ramowy Horyzont 2020
    8. Horizont 2020
    9. Horizonte 2020
    10. Orizzonte 2020
    11. Horyzont 2020
    12. Horizon 2020 Framework Programme (H2020)
    13. H2020
    Awards1
    1. 852925
  3. Japan Society for the Promotion of Science 10.13039/501100001691

    Region: Asia

    gov (National government)

    Labels6
    1. KAKENHI
    2. 日本学術振興会
    3. Gakushin
    4. JSPS KAKEN
    5. JSPS Grants-in-Aid for Scientific Research
    6. JSPS
    Awards1
    1. JP20H00354
  4. Ministry of Education, Culture, Sports, Science, and Technology 10.13039/501100001700 Ministry of Education, Culture, Sports, Science and Technology

    Region: Asia

    gov (National government)

    Labels3
    1. Monbu-kagaku-shō
    2. 文部科学省
    3. MEXT
    Awards1
    1. JPMXP 0112101001
  5. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency 10.13039/501100003382 Core Research for Evolutional Science and Technology

    Region: Asia

    gov (Local government)

    Labels3
    1. Core Research for Evolutionary Science and Technology
    2. 進化科学技術のコア研究
    3. CREST
    Awards1
    1. JPMJCR15F3
  6. Israel Science Foundation 10.13039/501100003977

    Region: Asia

    pri (Other non-profit organizations)

    Labels3
    1. The Israel Science Foundation
    2. הקרן הלאומית למדע
    3. ISF
    Awards1
    1. 1141/18
  7. Israel Science Foundation 10.13039/501100003977

    Region: Asia

    pri (Other non-profit organizations)

    Labels3
    1. The Israel Science Foundation
    2. הקרן הלאומית למדע
    3. ISF
    Awards1
    1. 3191/19
  8. Israel Science Foundation 10.13039/501100003977

    Region: Asia

    pri (Other non-profit organizations)

    Labels3
    1. The Israel Science Foundation
    2. הקרן הלאומית למדע
    3. ISF
    Awards1
    1. 1586/17
  9. Israel Science Foundation 10.13039/501100003977

    Region: Asia

    pri (Other non-profit organizations)

    Labels3
    1. The Israel Science Foundation
    2. הקרן הלאומית למדע
    3. ISF
    Awards1
    1. 1652/18
  10. Ministry of Science and Technology, Government of the People’s Republic of Bangladesh 10.13039/501100008804

    Region: Asia

    gov (National government)

    Labels2
    1. Ministry of Science and Technology
    2. MOST
    Awards1
    1. 3-16244
  11. Ministry of Science and Technology, Government of the People’s Republic of Bangladesh 10.13039/501100008804

    Region: Asia

    gov (National government)

    Labels2
    1. Ministry of Science and Technology
    2. MOST
    Awards1
    1. 3-15619
  12. Université de Sfax 10.13039/501100016206

    Region: Africa

    gov (Universities (academic only))

    Labels3
    1. University of Sfax
    2. جامعة صفاقس
    3. US
    Awards1
    1. 2016255

@article{Vizner_Stern_2021, title={Interfacial ferroelectricity by van der Waals sliding}, volume={372}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.abe8177}, DOI={10.1126/science.abe8177}, number={6549}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Vizner Stern, M. and Waschitz, Y. and Cao, W. and Nevo, I. and Watanabe, K. and Taniguchi, T. and Sela, E. and Urbakh, M. and Hod, O. and Ben Shalom, M.}, year={2021}, month=jun, pages={1462–1466} }