Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Going for the gold Single-particle cryogenic electron microscopy (cryo-EM) has become a go-to technique for structural biologists. Although data-processing and reconstruction methods have improved, innovations in sample preparation and data collection are essential to reliably achieve high-resolution reconstructions while also reducing the amount of time required per structure. Naydenova et al. tackled the issue of electron beam–induced particle movement, a major source of information loss, by designing a gold sample support that prevents buckling of the extremely thin layer of ice in which the particles are suspended (see Perspective by Rapp and Carragher). The negligible particle displacement permits extrapolation to “zero exposure” structure factors, revealing features typically lost in cryo-EM structures. Far fewer particles per unit resolution are required, which greatly accelerates structure determination, especially at high resolution. Science , this issue p. 223 ; see also p. 171

Bibliography

Naydenova, K., Jia, P., & Russo, C. J. (2020). Cryo-EM with sub–1 Å specimen movement. Science, 370(6513), 223–226.

Authors 3
  1. Katerina Naydenova (first)
  2. Peipei Jia (additional)
  3. Christopher J. Russo (additional)
References 82 Referenced 118
  1. 10.1017/S1431927619000758
  2. 10.1016/j.drudis.2019.12.006
  3. 10.1016/j.cocis.2017.12.009
  4. 10.1016/j.jmb.2011.09.008
  5. 10.1016/j.jsb.2012.02.003
  6. 10.1038/nmeth.4193
  7. 10.1107/S205225251801463X
  8. 10.1126/science.1259530
  9. 10.1016/j.ultramic.2015.05.017
  10. 10.1017/S0033583500004297
  11. 10.1039/c0cp02600j
  12. 10.1073/pnas.0706504104
  13. 10.1038/srep00713
  14. 10.1016/S0301-0104(00)00130-0
  15. 10.1016/j.jsb.2015.11.006
  16. 10.1364/OE.19.010686
  17. K. Jefimovs et al . in Advances in Patterning Materials and Processes XXXIV C. K. Hohle Ed. (SPIE 2017) pp. 140–146.
  18. 10.1016/j.jsb.2005.03.010
  19. 10.1038/s41592-019-0396-9
  20. 10.1038/nsb0498-294
  21. 10.1107/S1399004714017672
  22. 10.1016/j.str.2018.03.021
  23. 10.7554/eLife.03665
  24. 10.7554/eLife.06980
  25. 10.1098/rspb.1990.0057
  26. 10.1107/S0907444903006516
  27. 10.1073/pnas.1904766116
  28. 10.1038/s41467-019-10368-w
  29. 10.7554/eLife.42747
  30. 10.1016/j.jsb.2019.107437
  31. 10.7554/eLife.34257
  32. 10.1016/j.ultramic.2019.02.007
  33. 10.1002/jemt.1060100111
  34. 10.1063/1.4967864
  35. 10.1038/21918
  36. 10.1107/S2052252519012612
  37. 10.1038/nmeth.2472
  38. 10.1016/bs.mie.2016.05.001
  39. 10.1107/S1600576716000455
  40. 10.1107/S2059798320002223
  41. 10.1063/1.2721120
  42. 10.1017/S1431927619005798
  43. 10.1016/j.jmb.2003.07.013
  44. 10.1107/S2059798317007859
  45. 10.1107/S0021889897006766
  46. 10.1107/S0907444911001314
  47. 10.1107/S0907444910007493
  48. L. D. Landau E. M. Lifshitz Theory of Elasticity (Butterworth Heinemann ed. 3 1986).
  49. 10.1007/BF01368120
  50. 10.1103/PhysRev.60.597
  51. G. W. C. Kaye T. H. Laby Tables of Physical and Chemical Constants (Longman ed. 15 1993).
  52. 10.1016/0032-0633(95)00112-3
  53. 10.1088/0953-8984/15/45/R01
  54. 10.1073/pnas.1700103114
  55. 10.1107/S2052252520002560
  56. 10.1016/0304-3991(93)90101-3
  57. 10.1107/S2059798318003078
  58. H. Shi W. Ling D. Zhu X. Zhang Increasing vitrification temperature improves the cryo-electron microscopy reconstruction. bioRxiv [preprint]. 30 October 2019.824698 (10.1101/824698)
  59. 10.1038/1881144a0
  60. 10.1111/j.1365-2818.1982.tb04625.x
  61. 10.1098/rstb.1977.0036
  62. 10.1103/PhysRevB.48.9973
  63. 10.1016/0301-0104(81)80158-9
  64. 10.7554/eLife.42166
  65. 10.1002/andp.19053220806
  66. 10.1016/j.bpj.2011.04.018
  67. 10.1016/j.ultramic.2018.01.009
  68. 10.1016/j.ultramic.2018.01.011
  69. 10.1021/acs.nanolett.8b01126
  70. 10.1016/j.jsb.2019.04.011
  71. 10.1038/s41467-018-06076-6
  72. H. Guo . Electron event representation (EER) data enables efficient cryo-EM file storage with full preservation of spatial and temporal resolution. bioRxiv [preprint]. 28 April 2020.066795 (10.1101/2020.04.28.066795)
  73. T. Nakane . Single-particle cryo-EM at atomic resolution. bioRxiv [preprint]. 22 May 2020.110189
  74. 10.1016/j.cell.2016.05.040
  75. 10.1016/S0304-3991(79)90211-0
  76. 10.1016/j.jsb.2009.11.001
  77. 10.1016/j.jsb.2009.11.014
  78. 10.1016/j.ymeth.2016.02.018
  79. 10.1038/nmeth.4169
  80. 10.7554/eLife.35383
  81. 10.1021/nl0497171
  82. 10.1038/s41467-017-00782-3
Dates
Type When
Created 4 years, 10 months ago (Oct. 16, 2020, 3:50 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 6:21 p.m.)
Indexed 1 week, 1 day ago (Aug. 12, 2025, 6:06 p.m.)
Issued 4 years, 10 months ago (Oct. 9, 2020)
Published 4 years, 10 months ago (Oct. 9, 2020)
Published Print 4 years, 10 months ago (Oct. 9, 2020)
Funders 2
  1. Australian Nanotechnology Network 10.13039/100013474

    Region: Oceania

    pri (Other non-profit organizations)

    Labels4
    1. The Australian Nanotechnology Network
    2. Aus Nanotech Network
    3. ANN
    4. AUSNANO
  2. Medical Research Council 10.13039/501100000265

    Region: Europe

    gov (National government)

    Labels3
    1. Medical Research Council (United Kingdom)
    2. UK Medical Research Council
    3. MRC
    Awards1
    1. MC_UP_120117

@article{Naydenova_2020, title={Cryo-EM with sub–1 Å specimen movement}, volume={370}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.abb7927}, DOI={10.1126/science.abb7927}, number={6513}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Naydenova, Katerina and Jia, Peipei and Russo, Christopher J.}, year={2020}, month=oct, pages={223–226} }