Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Quantum anomalous Hall goes intrinsic Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi 2 Se 3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi 2 Te 4 . Science , this issue p. 900 , p. 895 ; see also p. 848

Bibliography

Serlin, M., Tschirhart, C. L., Polshyn, H., Zhang, Y., Zhu, J., Watanabe, K., Taniguchi, T., Balents, L., & Young, A. F. (2020). Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 367(6480), 900–903.

Authors 9
  1. M. Serlin (first)
  2. C. L. Tschirhart (additional)
  3. H. Polshyn (additional)
  4. Y. Zhang (additional)
  5. J. Zhu (additional)
  6. K. Watanabe (additional)
  7. T. Taniguchi (additional)
  8. L. Balents (additional)
  9. A. F. Young (additional)
References 46 Referenced 1,214
  1. 10.1103/PhysRevLett.61.2015
  2. 10.1063/1.5009718
  3. 10.1073/pnas.1810003115
  4. 10.1126/science.1234414
  5. 10.1038/nmat4204
  6. 10.1063/1.4935075
  7. 10.1038/ncomms9474
  8. 10.1103/PhysRevLett.113.137201
  9. 10.1103/PhysRevLett.111.136801
  10. 10.1038/nphys3053
  11. 10.1126/science.1187485
  12. 10.1126/sciadv.1500740
  13. 10.1073/pnas.1424322112
  14. 10.1063/1.4921093
  15. 10.1126/science.aan5991
  16. 10.1073/pnas.1424760112
  17. 10.1103/PhysRevB.99.075127
  18. N. Bultinck S. Chatterjee M. P. Zaletel Anomalous Hall ferromagnetism in twisted bilayer graphene. arXiv:1901.08110 [cond-mat.str-el] (23 January 2019). (10.1103/PhysRevLett.124.166601)
  19. 10.1103/PhysRevResearch.1.033126
  20. 10.1073/pnas.1108174108
  21. 10.1103/PhysRevB.82.121407
  22. 10.1038/s41567-018-0387-2
  23. 10.1038/nature26154
  24. 10.1038/nature26160
  25. 10.1126/science.aav1910
  26. 10.1038/s41586-019-1695-0
  27. 10.1126/science.aaw3780
  28. G. Chen A. L. Sharpe E. J. Fox Y.-H. Zhang S. Wang L. Jiang B. Lyu H. Li K. Watanabe T. Taniguchi Z. Shi T. Senthil D. Goldhaber-Gordon Y. Zhang F. Wang. Tunable Correlated Chern Insulator and Ferromagnetism in Trilayer Graphene/Boron Nitride Moiré Superlattice. arXiv:1905.06535 [cond-mat.mes-hall] (16 May 2019). (10.1038/s41586-020-2049-7)
  29. 10.1126/sciadv.1600167
  30. M. Xie A. H. MacDonald On the nature of the correlated insulator states in twisted bilayer graphene. arXiv:1812.04213 [cond-mat.str-el] (11 December 2018).
  31. S. Liu E. Khalaf J. Y. Lee A. Vishwanath Nematic topological semimetal and insulator in magic angle bilayer graphene at charge neutrality. arXiv:1905.07409 [cond-mat.str-el] (17 May 2019).
  32. 10.1126/science.1237240
  33. 10.1126/science.1195709
  34. 10.1038/s41467-019-10553-x
  35. 10.1038/nmat3973
  36. M. Serlin C. L. Tschirhart H. Polshyn Y. Zhang J. Zhu K. Watanabe T. Taniguchi L. Balents A. F. Young Intrinsic quantized anomalous Hall effect in a moiré heterostructure Version 2 Dryad (2019); https://doi.org/10.5061/dryad.ffbg79cqk. (10.1126/science.aay5533)
  37. 10.1021/acs.nanolett.5b05263
  38. 10.1038/nature23893
  39. 10.1126/science.1244358
  40. 10.1063/1.338202
  41. A. Uri S. Grover Y. Cao J. A. Crosse K. Bagani D. Rodan-Legrain Y. Myasoedov K. Watanabe T. Taniguchi P. Moon M. Koshino P. Jarillo-Herrero E. Zeldov Mapping the twist angle and unconventional landau levels in magic angle graphene. arXiv:1908.04595 [cond-mat.mes-hall] (13 August 2019). (10.1038/s41586-020-2255-3)
  42. 10.1126/science.aan8458
  43. 10.1103/PhysRevLett.110.216601
  44. 10.1038/s41567-019-0596-3
  45. 10.1103/PhysRev.108.1394
  46. 10.1038/nmat3130
Dates
Type When
Created 5 years, 8 months ago (Dec. 19, 2019, 7:05 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 6:34 p.m.)
Indexed 1 hour, 2 minutes ago (Aug. 21, 2025, 5:45 a.m.)
Issued 5 years, 6 months ago (Feb. 21, 2020)
Published 5 years, 6 months ago (Feb. 21, 2020)
Published Print 5 years, 6 months ago (Feb. 21, 2020)
Funders 3
  1. U.S. Department of Energy 10.13039/100000015

    Region: Americas

    gov (National government)

    Labels8
    1. Energy Department
    2. Department of Energy
    3. United States Department of Energy
    4. ENERGY.GOV
    5. US Department of Energy
    6. USDOE
    7. DOE
    8. USADOE
    Awards1
    1. DE-FG02-08ER46524
  2. Air Force Office of Scientific Research 10.13039/100000181

    Region: Americas

    gov (National government)

    Labels4
    1. AF Office of Scientific Research
    2. US Air Force Office of Scientific Research
    3. United States Air Force Office of Scientific Research
    4. AFOSR
    Awards1
    1. FA9550-16-1-0252
  3. Army Research Office 10.13039/100000183

    Region: Americas

    gov (National government)

    Labels5
    1. U.S. Army Research Office
    2. United States Army Research Office
    3. U.S. Army Research Laboratory's Army Research Office
    4. ARL's Army Research Office
    5. ARO
    Awards1
    1. W911NF-17-1-0323

@article{Serlin_2020, title={Intrinsic quantized anomalous Hall effect in a moiré heterostructure}, volume={367}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aay5533}, DOI={10.1126/science.aay5533}, number={6480}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Serlin, M. and Tschirhart, C. L. and Polshyn, H. and Zhang, Y. and Zhu, J. and Watanabe, K. and Taniguchi, T. and Balents, L. and Young, A. F.}, year={2020}, month=feb, pages={900–903} }