Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Ionic floating-gate memories Digital implementations of artificial neural networks perform many tasks, such as image recognition and language processing, but are too energy intensive for many applications. Analog circuits that use large crossbar arrays of synaptic memory elements represent a low-power alternative, but most devices cannot update the synaptic weights uniformly or scale to large array sizes. Fuller et al. developed an integrated device, ionic floating-gate memory, that has the gate terminal of a redox transistor electrically connected to a diffusive memristor. This low-power device enabled linear and symmetric weight updates in parallel over an entire crossbar array at megahertz rates over 10 9 write-read cycles. Science , this issue p. 570

Bibliography

Fuller, E. J., Keene, S. T., Melianas, A., Wang, Z., Agarwal, S., Li, Y., Tuchman, Y., James, C. D., Marinella, M. J., Yang, J. J., Salleo, A., & Talin, A. A. (2019). Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 364(6440), 570–574.

Authors 12
  1. Elliot J. Fuller (first)
  2. Scott T. Keene (additional)
  3. Armantas Melianas (additional)
  4. Zhongrui Wang (additional)
  5. Sapan Agarwal (additional)
  6. Yiyang Li (additional)
  7. Yaakov Tuchman (additional)
  8. Conrad D. James (additional)
  9. Matthew J. Marinella (additional)
  10. J. Joshua Yang (additional)
  11. Alberto Salleo (additional)
  12. A. Alec Talin (additional)
References 33 Referenced 639
  1. 10.1038/nature14539
  2. 10.1038/s41928-018-0059-3
  3. A. Coates B. Huval T. Wang D. Wu B. Catanzaro N. Andrew in Proceedings of the 30th International Conference on Machine Learning S. Dasgupta D. McAllester Eds. (Proceedings of Machine Learning Research 2013) vol. 28 pp. 1337–1345.
  4. N. P. Jouppi et al . in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA) (ACM 2017) vol. 1 pp. 1–12.
  5. M. J. Marinella S. Agarwal A. Hsia I. Richter R. Jacobs-Gedrim J. Niroula S. J. Plimpton E. Ipek C. D. James Multiscale co-design analysis of energy latency area and accuracy of a ReRAM analog neural training accelerator. IEEE J. Emerg. Sel. Top. Circuits Syst . 8 86–101 (2018). 10.1109/JETCAS.2018.2796379 (10.1109/JETCAS.2018.2796379)
  6. 10.1109/TED.2015.2439635
  7. 10.1038/nature06932
  8. S. Agarwal et al . in 2016 International Joint Conference on Neural Networks (IJCNN) (IJCNN 2016) pp. 929–938.
  9. 10.1038/s41467-018-04484-2
  10. 10.1038/s41928-017-0002-z
  11. 10.1002/adma.201604310
  12. 10.1038/nmat4856
  13. 10.1002/adma.201802353
  14. 10.1002/adfm.201804170
  15. J. Tang et al . paper presented at the 2018 IEEE International Electron Devices Meeting San Francisco CA 1 to 5 December 2018.
  16. 10.1038/nmat4756
  17. 10.1088/1361-6463/aabe70
  18. 10.1002/aelm.201800686
  19. 10.3389/fnins.2015.00484
  20. 10.1002/adma.201604457
  21. S.-G. Park et al . in 2012 Electron Devices Meeting (IEDM 2012) (IEEE 2012) pp. 20.28.21–20.28.24.
  22. 10.1063/1.3304167
  23. 10.1002/adma.201301240
  24. 10.1038/s42005-019-0125-9
  25. 10.1021/acsami.5b07517
  26. 10.1109/5.622505
  27. 10.1038/nature14441
  28. 10.1038/nature14441
  29. R. B. Jacobs-Gedrim et al . in 2017 IEEE International Conference on Rebooting Computing (ICRC) (IEEE 2017) pp. 1–10.
  30. 10.1038/s41563-017-0001-5
  31. 10.1038/natrevmats.2017.86
  32. 10.1021/cr0207123
  33. 10.1016/j.jelechem.2008.05.017
Dates
Type When
Created 6 years, 3 months ago (April 25, 2019, 7:06 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 6:52 p.m.)
Indexed 4 days ago (Aug. 20, 2025, 9:01 a.m.)
Issued 6 years, 3 months ago (May 10, 2019)
Published 6 years, 3 months ago (May 10, 2019)
Published Print 6 years, 3 months ago (May 10, 2019)
Funders 3
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. 1739795
  2. Basic Energy Sciences 10.13039/100006151

    Region: Americas

    gov (National government)

    Labels6
    1. Office of Basic Energy Sciences
    2. DOE Office of Basic Energy Sciences
    3. US Department of Energy's Basic Energy Sciences
    4. DOE Basic Energy Sciences
    5. Department of Energy Basic Energy Sciences Program
    6. BES
    Awards1
    1. DESC0001160
  3. Sandia National Laboratories’ Laboratory Directed Research and Development Program

@article{Fuller_2019, title={Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing}, volume={364}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aaw5581}, DOI={10.1126/science.aaw5581}, number={6440}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Fuller, Elliot J. and Keene, Scott T. and Melianas, Armantas and Wang, Zhongrui and Agarwal, Sapan and Li, Yiyang and Tuchman, Yaakov and James, Conrad D. and Marinella, Matthew J. and Yang, J. Joshua and Salleo, Alberto and Talin, A. Alec}, year={2019}, month=may, pages={570–574} }