Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Cooler electrons for transistors The operating power of field-effect transistors is constrained in part by the minimum change in voltage needed to change the current output. This subthreshold swing (SS) limit is caused by hotter electrons from a thermal electron source leaking over the potential of the gate electrode. Qiu et al. show that graphene can act as a Dirac source that creates a narrower distribution of electron energies. When coupled to a carbon nanotube channel, the decrease in SS would allow the supply voltage to be decreased from 0.7 to 0.5 volts. Science , this issue p. 387

Bibliography

Qiu, C., Liu, F., Xu, L., Deng, B., Xiao, M., Si, J., Lin, L., Zhang, Z., Wang, J., Guo, H., Peng, H., & Peng, L.-M. (2018). Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 361(6400), 387–392.

Authors 12
  1. Chenguang Qiu (first)
  2. Fei Liu (additional)
  3. Lin Xu (additional)
  4. Bing Deng (additional)
  5. Mengmeng Xiao (additional)
  6. Jia Si (additional)
  7. Li Lin (additional)
  8. Zhiyong Zhang (additional)
  9. Jian Wang (additional)
  10. Hong Guo (additional)
  11. Hailin Peng (additional)
  12. Lian-Mao Peng (additional)
References 61 Referenced 314
  1. 10.1109/JPROC.2009.2035451
  2. 10.1038/nature10679
  3. C. M. Hu et al . paper presented at the 2010 International Electron Devices Meeting; doi:10.1109/IEDM.2010.5703372. (10.1109/IEDM.2010.5703372)
  4. International Technology Roadmap for Semiconductors (2013 edition); www.itrs2.net/2013-itrs.html.
  5. 10.1038/530144a
  6. 10.1109/MCD.2005.1388765
  7. 10.1109/JPROC.2010.2070470
  8. 10.1109/TED.2004.841344
  9. 10.1021/nl071804g
  10. A. I. Khan et al . paper presented at the 2011 International Electron Devices Meeting; doi:10.1109/IEDM.2011.6131532. (10.1109/IEDM.2011.6131532)
  11. 10.1016/j.sse.2011.06.008
  12. K. Jeon et al . paper presented at the 2010 Symposium on VLSI Technology; doi: 10.1109/VLSIT.2010.5556195. (10.1109/VLSIT.2010.5556195)
  13. 10.1557/mrs.2014.137
  14. 10.1109/LED.2010.2061214
  15. F. Mayer et al . paper presented at the 2008 IEEE International Electron Devices Meeting; doi:10.1109/IEDM.2008.4796641. (10.1109/IEDM.2008.4796641)
  16. 10.1109/JEDS.2014.2326622
  17. A. Padilla et al . paper presented at the 2008 IEEE International Electron Devices Meeting; doi:10.1109/IEDM.2008.4796643. (10.1109/IEDM.2008.4796643)
  18. 10.1038/nature01797
  19. 10.1021/nl0717107
  20. 10.1021/nn503627h
  21. 10.1126/science.aan2476
  22. 10.1126/sciadv.1601240
  23. 10.1021/nl203701g
  24. 10.1126/science.aaj1628
  25. 10.1126/science.1218461
  26. 10.1103/RevModPhys.83.407
  27. 10.1103/PhysRevLett.102.026807
  28. 10.1103/PhysRevLett.93.196805
  29. 10.1109/LED.2010.2045631
  30. 10.1109/TED.2013.2274197
  31. 10.1021/acs.nanolett.6b00803
  32. 10.1021/nn200026e
  33. G. Zhang et al . paper presented at the 2006 International Electron Devices Meeting; doi:10.1109/IEDM.2006.346804. (10.1109/IEDM.2006.346804)
  34. 10.1021/nn506806b
  35. S. Natarajan et al . paper presented at the 2014 IEEE International Electron Devices Meeting; doi:10.1109/IEDM.2014.7046976. (10.1109/IEDM.2014.7046976)
  36. 10.1038/nature15387
  37. 10.1063/1.4773521
  38. 10.1109/LED.2015.2501319
  39. 10.1021/acs.nanolett.7b01584
  40. 10.1109/JEDS.2017.2731401
  41. 10.1109/LED.2017.2714178
  42. M. H. Lee et al . paper presented at the 2015 IEEE International Electron Devices Meeting; doi:10.1109/IEDM.2015.7409759. (10.1109/IEDM.2015.7409759)
  43. 10.1038/s41565-017-0010-1
  44. K.-S. Li et al . paper presented at the 2015 IEEE International Electron Devices Meeting; doi:10.1109/IEDM.2015.7409760. (10.1109/IEDM.2015.7409760)
  45. 10.1109/LED.2016.2523681
  46. K. Tomioka et al . paper presented at the 2012 Symposium on VLSI Technology; doi:10.1109/VLSIT.2012.6242454. (10.1109/VLSIT.2012.6242454)
  47. 10.1038/ncomms9948
  48. R. Saito G. Dresselhaus M. S. Dresselhaus Physical Properties of Carbon Nanotubes (Imperial College Press 1998). (10.1142/p080)
  49. 10.1109/TED.2006.890384
  50. 10.1109/TED.2006.877262
  51. 10.1109/TED.2015.2457453
  52. 10.1109/TNANO.2006.876912
  53. 10.1103/PhysRevB.54.11169
  54. 10.1088/0953-8984/22/2/022201
  55. 10.1103/PhysRevB.83.195131
  56. 10.1088/1367-2630/16/1/013019
  57. S. Datta Quantum Transport: Atom to Transistor (Cambridge Univ. Press 2005). (10.1017/CBO9781139164313)
  58. 10.1109/TED.2014.2353213
  59. P. Marconcini, P. Maccuci, The kp method and its application to graphene, carbon nanotubes and graphene nanoribbons: The Dirac equation. Riv. Nuovo Cim. 34, 489 (2011). / Riv. Nuovo Cim. / The kp method and its application to graphene, carbon nanotubes and graphene nanoribbons: The Dirac equation by Marconcini P. (2011)
  60. 10.1103/PhysRev.38.80
  61. 10.1103/PhysRevLett.81.2506
Dates
Type When
Created 7 years, 2 months ago (June 14, 2018, 2:05 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 12:53 p.m.)
Indexed 2 days, 10 hours ago (Aug. 30, 2025, 1:07 p.m.)
Issued 7 years, 1 month ago (July 27, 2018)
Published 7 years, 1 month ago (July 27, 2018)
Published Print 7 years, 1 month ago (July 27, 2018)
Funders 3
  1. National Science Foundation of China 10.13039/501100001809 National Natural Science Foundation of China

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards1
    1. 61621061
  2. MOST
    Awards1
    1. 2016YFA0201901
  3. MOST
    Awards1
    1. 2016YFA0201902

@article{Qiu_2018, title={Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches}, volume={361}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aap9195}, DOI={10.1126/science.aap9195}, number={6400}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Qiu, Chenguang and Liu, Fei and Xu, Lin and Deng, Bing and Xiao, Mengmeng and Si, Jia and Lin, Li and Zhang, Zhiyong and Wang, Jian and Guo, Hong and Peng, Hailin and Peng, Lian-Mao}, year={2018}, month=jul, pages={387–392} }