Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Nanoparticle synthesis gets a shockNanoparticles are useful in a wide range of applications such as catalysis, imaging, and energy storage. Yaoet al.developed a method for making nanoparticles with up to eight different elements (see the Perspective by Skrabalak). The method relies on shocking metal salt-covered carbon nanofibers, followed by rapid quenching. The “carbothermal shock synthesis” can be tuned to select for nanoparticle size as well. The authors successfully created PtPdRhRuCe nanoparticles to catalyze ammonia oxidation.Science, this issue p.1489; see also p.1467

Bibliography

Yao, Y., Huang, Z., Xie, P., Lacey, S. D., Jacob, R. J., Xie, H., Chen, F., Nie, A., Pu, T., Rehwoldt, M., Yu, D., Zachariah, M. R., Wang, C., Shahbazian-Yassar, R., Li, J., & Hu, L. (2018). Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 359(6383), 1489–1494.

Authors 16
  1. Yonggang Yao (first)
  2. Zhennan Huang (additional)
  3. Pengfei Xie (additional)
  4. Steven D. Lacey (additional)
  5. Rohit Jiji Jacob (additional)
  6. Hua Xie (additional)
  7. Fengjuan Chen (additional)
  8. Anmin Nie (additional)
  9. Tiancheng Pu (additional)
  10. Miles Rehwoldt (additional)
  11. Daiwei Yu (additional)
  12. Michael R. Zachariah (additional)
  13. Chao Wang (additional)
  14. Reza Shahbazian-Yassar (additional)
  15. Ju Li (additional)
  16. Liangbing Hu (additional)
References 46 Referenced 1,631
  1. 10.1126/science.aaf8402
  2. 10.1126/science.aah6133
  3. 10.1038/nmat4115
  4. 10.1126/sciadv.1700101
  5. 10.1126/science.aaa8765
  6. 10.1126/science.1252553
  7. 10.1038/nchem.1195
  8. 10.1039/b815548h
  9. 10.1021/cr1002529
  10. 10.1021/acs.chemrev.6b00211
  11. 10.1126/science.280.5370.1735
  12. 10.1021/jacs.5b05139
  13. 10.1021/jacs.7b03163
  14. S. Ranganathan, Alloyed pleasures: Multiatomic cocktails. Curr. Sci. 85, 1404–1406 (2003). / Curr. Sci. / Alloyed pleasures: Multiatomic cocktails by Ranganathan S. (2003)
  15. 10.1002/adem.200300567
  16. B. S. Murty J.-W. Yeh S. Ranganathan High-Entropy Alloys (Butterworth-Heinemann 2014). (10.1016/B978-0-12-800251-3.00002-X)
  17. 10.1038/nature17981
  18. 10.1016/j.mattod.2015.11.026
  19. 10.1038/nature06598
  20. D. A. Porter K. E. Easterling M. Y. Sherif Phase Transformations in Metals and Alloys (CRC Press ed. 3 2009). (10.1201/9781439883570)
  21. N. Eustathopoulos M. G. Nicholas B. B. Drevet Wettability at High Temperatures (Elsevier 1999) vol. 3.
  22. 10.1038/ncomms2399
  23. 10.1126/science.1164170
  24. 10.1038/nmat1924
  25. 10.1126/science.1182122
  26. P.-H. Lu et al . Highly deformable and mobile palladium nanocrystals as efficient carbon scavengers. arXiv:1802.00207 [physics.app-ph] (1 Feb 2018).
  27. 10.1103/PhysRevLett.85.110
  28. 10.1007/s12274-014-0685-7
  29. 10.1038/nmat4336
  30. 10.1021/ja100845v
  31. D. M. Considine Chemical and Process Technology Encyclopedia (CRC Press 1974).
  32. 10.1016/S1875-5372(17)30091-7
  33. 10.1021/jp508144z
  34. B. V. I. Chernyshov, I. M. Kisil, Platinum metals catalvtic systems in nitric acid production. Platin. Met. Rev. 37, 136–143 (1993). (10.1595/003214093X373136143) / Platin. Met. Rev. / Platinum metals catalvtic systems in nitric acid production by Chernyshov B. V. I. (1993)
  35. 10.1595/147106711X615749
  36. 10.1179/cmq.1984.23.3.309
  37. 10.1126/science.1236098
  38. 10.1016/j.fuel.2016.06.115
  39. 10.1021/acscatal.6b01087
  40. 10.1002/cctc.201100186
  41. 10.1595/205651315X686011
  42. 10.1039/c1cy00007a
  43. 10.1017/S1431927617010807
  44. 10.1016/j.jcat.2008.11.018
  45. 10.1002/anie.200462024
  46. 10.1134/S0023158409060160
Dates
Type When
Created 7 years, 5 months ago (March 29, 2018, 2:11 p.m.)
Deposited 1 year, 1 month ago (July 2, 2024, 8:33 a.m.)
Indexed 20 minutes ago (Sept. 2, 2025, 8 a.m.)
Issued 7 years, 5 months ago (March 30, 2018)
Published 7 years, 5 months ago (March 30, 2018)
Published Print 7 years, 5 months ago (March 30, 2018)
Funders 5
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. CMMI-1619743
  2. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-1410636
  3. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-0959470
  4. U.S. Department of Defense 10.13039/100000005

    Region: Americas

    gov (National government)

    Labels6
    1. United States Department of Defense
    2. Department of Defense
    3. U.S. Dept of Defense
    4. US Department of Defense
    5. DOD
    6. USDOD
    Awards1
    1. National Defense Science and Engineering Graduate (NDSEG) Fellowship
  5. Office of Naval Research 10.13039/100000006

    Region: Americas

    gov (National government)

    Labels6
    1. U.S. Office of Naval Research
    2. Naval Research
    3. United States Office of Naval Research
    4. U.S. Department of the Navy Office of Naval Research
    5. The Office of Naval Research
    6. ONR
    Awards1
    1. ONR-MURI

@article{Yao_2018, title={Carbothermal shock synthesis of high-entropy-alloy nanoparticles}, volume={359}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aan5412}, DOI={10.1126/science.aan5412}, number={6383}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Yao, Yonggang and Huang, Zhennan and Xie, Pengfei and Lacey, Steven D. and Jacob, Rohit Jiji and Xie, Hua and Chen, Fengjuan and Nie, Anmin and Pu, Tiancheng and Rehwoldt, Miles and Yu, Daiwei and Zachariah, Michael R. and Wang, Chao and Shahbazian-Yassar, Reza and Li, Ju and Hu, Liangbing}, year={2018}, month=mar, pages={1489–1494} }