Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Whither the density in DFT calculations? The continuing development of density functional theory (DFT) has greatly expanded the size and complexity of molecules amenable to computationally tractable simulation. The conventional metric of success for new functionals has been the accuracy of their calculated energies. Medvedev et al. examined how well these functionals calculate electron density across a series of neutral and cationic atoms (see the Perspective by Hammes-Schiffer). Although historically the accuracies of energy and density have improved in tandem, certain recent functionals have sacrificed fidelity to the true density. Science , this issue p. 49 ; see also p. 28

Bibliography

Medvedev, M. G., Bushmarinov, I. S., Sun, J., Perdew, J. P., & Lyssenko, K. A. (2017). Density functional theory is straying from the path toward the exact functional. Science, 355(6320), 49–52.

Authors 5
  1. Michael G. Medvedev (first)
  2. Ivan S. Bushmarinov (additional)
  3. Jianwei Sun (additional)
  4. John P. Perdew (additional)
  5. Konstantin A. Lyssenko (additional)
References 96 Referenced 808
  1. 10.1103/RevModPhys.87.897
  2. 10.1103/PhysRev.136.B864
  3. 10.1073/pnas.76.12.6062
  4. 10.1098/rsta.2012.0476
  5. 10.1038/nchem.2535
  6. 10.1002/jcc.1122
  7. 10.1002/(SICI)1096-987X(199709)18:12<1534::AID-JCC10>3.0.CO;2-K
  8. 10.1063/1.1347371
  9. 10.1063/1.1412605
  10. 10.1142/9789812830586_0010
  11. 10.1007/s00214-002-0331-4
  12. 10.1063/1.2821123
  13. 10.1107/S0108768111033015
  14. 10.1021/jp2031384
  15. 10.1080/00268976.2013.854424
  16. M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman G. Scalmani V. Barone B. Mennucci G. A. Petersson H. Nakatsuji M. Caricato X. Li H. P. Hratchian A. F. Izmaylov J. Bloino G. Zheng J. L. Sonnenberg M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai T. Vreven J. A. Montgomery Jr. J. E. Peralta F. Ogliaro M. Bearpark J. J. Heyd E. Brothers K. N. Kudin V. N. Staroverov R. Kobayashi J. Normand K. Raghavachari A. Rendell J. C. Burant S. S. Iyengar J. Tomasi M. Cossi N. Rega J. M. Millam M. Klene J. E. Knox J. B. Cross V. Bakken C. Adamo J. Jaramillo R. Gomperts R. E. Stratmann O. Yazyev A. J. Austin R. Cammi C. Pomelli J. W. Ochterski R. L. Martin K. Morokuma V. G. Zakrzewski G. A. Voth P. Salvador J. J. Dannenberg S. Dapprich A. D. Daniels Ö. Farkas J. B. Foresman J. V. Ortiz J. Cioslowski D. J. Fox Gaussian 09 Revision D.01 .
  17. M. S. Gordon M. W. Schmidt in Theory and Applications of Computational Chemistry G. E. Scuseria C. E. Dykstra G. Frenking K. S. Kim Eds. (Elsevier 2005) pp. 1167–1189. (10.1016/B978-044451719-7/50084-6)
  18. 10.1103/PhysRevLett.115.036402
  19. J. P. Perdew K. Schmidt in Density Functional Theory and Its Applications to Materials V. Van Doren K. Van Alsenoy P. Geerlings Eds. (American Institute of Physics 2001) pp. 1–20.
  20. 10.1063/1.1520138
  21. 10.1063/1.464913
  22. 10.1063/1.470829
  23. 10.1103/PhysRevLett.91.146401
  24. 10.1103/PhysRevLett.103.026403
  25. 10.1103/PhysRevLett.111.073003
  26. 10.1039/C6CC01305H
  27. 10.1063/1.472933
  28. V. Sadovnichy A. Tikhonravov V. Voevodin V. Opanasenko in Contemporary High Performance Computing: From Petascale Toward Exascale (CRC Press 2013) pp. 283–307.
  29. 10.1002/jcc.22885
  30. M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman J. A. Montgomery Jr. T. Vreven K. N. Kudin J. C. Burant J. M. Millam S. S. Iyengar J. Tomasi V. Barone B. Mennucci M. Cossi G. Scalmani N. Rega G. A. Petersson H. Nakatsuji M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima Y. Honda O. Kitao H. Nakai M. Klene X. Li J. E. Knox H. P. Hratchian J. B. Cross V. Bakken C. Adamo J. Jaramillo R. Gomperts R. E. Stratmann O. Yazyev A. J. Austin R. Cammi C. Pomelli J. W. Ochterski P. Y. Ayala K. Morokuma G. A. Voth P. Salvador J. J. Dannenberg V. G. Zakrzewski S. Dapprich A. D. Daniels M. C. Strain O. Farkas D. K. Malick A. D. Rabuck K. Raghavachari J. B. Foresman J. V. Ortiz Q. Cui A. G. Baboul S. Clifford J. Cioslowski B. B. Stefanov G. Liu A. Liashenko P. Piskorz I. Komaromi R. L. Martin D. J. Fox T. Keith M. A. Al-Laham C. Y. Peng A. Nanayakkara M. Challacombe P. M. W. Gill B. Johnson W. Chen M. W. Wong C. Gonzalez J. A. Pople Gaussian 03 Revision D.02 .
  31. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing Vienna 2008).
  32. 10.1007/BF03156228
  33. 10.1139/p80-159
  34. 10.1103/PhysRevB.23.5048
  35. 10.1002/qua.560310207
  36. 10.1103/PhysRevA.38.3098
  37. 10.1103/PhysRevB.37.785
  38. 10.1016/S0009-2614(97)01282-7
  39. 10.1080/002689796173813
  40. 10.1021/jp0539223
  41. 10.1021/jp052436c
  42. 10.1021/ct3002656
  43. 10.1080/0026897042000275017
  44. 10.1080/00268970010018431
  45. 10.1103/PhysRevLett.77.3865
  46. 10.1103/PhysRevLett.100.136406
  47. 10.1103/PhysRevB.45.13244
  48. 10.1103/PhysRevB.46.6671
  49. 10.1103/PhysRevLett.80.890
  50. 10.1103/PhysRevB.59.7413
  51. 10.1063/1.2912068
  52. 10.1021/jz200616w
  53. 10.1063/1.1774975
  54. 10.1063/1.2370993
  55. 10.1021/jz201525m
  56. 10.1039/c2cp42025b
  57. 10.1063/1.4742312
  58. 10.1063/1.4789414
  59. 10.1073/pnas.1423145112
  60. 10.1103/PhysRevLett.82.2544
  61. 10.1063/1.1476309
  62. 10.1063/1.1665298
  63. 10.1103/PhysRevA.76.042506
  64. 10.1016/S0009-2614(97)00201-7
  65. 10.1103/PhysRevB.33.8822
  66. 10.1021/ct300778e
  67. 10.1021/j100096a001
  68. 10.1007/s00214-001-0300-3
  69. 10.1063/1.477267
  70. 10.1063/1.2061227
  71. 10.1063/1.475007
  72. 10.1063/1.476438
  73. 10.1063/1.464304
  74. 10.1016/j.cplett.2004.06.011
  75. 10.1021/ct800149y
  76. 10.1063/1.1564060
  77. 10.1063/1.1760074
  78. 10.1063/1.2404663
  79. 10.1063/1.2126975
  80. 10.1021/ct0502763
  81. 10.1007/s00214-007-0310-x
  82. 10.1021/ar700111a
  83. 10.1021/jp066479k
  84. 10.1021/ct800246v
  85. 10.1021/jz201170d
  86. 10.1039/c2cp42576a
  87. 10.1103/PhysRevA.60.1034
  88. 10.1063/1.475428
  89. 10.1080/00268970010023435
  90. 10.1063/1.478522
  91. 10.1021/ct049851d
  92. 10.1063/1.476928
  93. 10.1016/j.comptc.2013.04.009
  94. 10.1063/1.3663871
  95. 10.1063/1.2834918
  96. 10.1063/1.1812257
Dates
Type When
Created 8 years, 8 months ago (Jan. 5, 2017, 2:10 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 12:16 p.m.)
Indexed 3 days, 3 hours ago (Sept. 3, 2025, 5:56 a.m.)
Issued 8 years, 8 months ago (Jan. 6, 2017)
Published 8 years, 8 months ago (Jan. 6, 2017)
Published Print 8 years, 8 months ago (Jan. 6, 2017)
Funders 0

None

@article{Medvedev_2017, title={Density functional theory is straying from the path toward the exact functional}, volume={355}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aah5975}, DOI={10.1126/science.aah5975}, number={6320}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Medvedev, Michael G. and Bushmarinov, Ivan S. and Sun, Jianwei and Perdew, John P. and Lyssenko, Konstantin A.}, year={2017}, month=jan, pages={49–52} }