Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

The activated spliceosome (B act ) is in a catalytically inactive state and is remodeled into a catalytically active machine by the RNA helicase Prp2, but the mechanism is unclear. Here, we describe a 3D electron cryomicroscopy structure of the Saccharomyces cerevisiae B act complex at 5.8-angstrom resolution. Our model reveals that in B act , the catalytic U2/U6 RNA-Prp8 ribonucleoprotein core is already established, and the 5′ splice site (ss) is oriented for step 1 catalysis but occluded by protein. The first-step nucleophile—the branchsite adenosine—is sequestered within the Hsh155 HEAT domain and is held 50 angstroms away from the 5′ss. Our structure suggests that Prp2 adenosine triphosphatase–mediated remodeling leads to conformational changes in Hsh155’s HEAT domain that liberate the first-step reactants for catalysis.

Bibliography

Rauhut, R., Fabrizio, P., Dybkov, O., Hartmuth, K., Pena, V., Chari, A., Kumar, V., Lee, C.-T., Urlaub, H., Kastner, B., Stark, H., & Lührmann, R. (2016). Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science, 353(6306), 1399–1405.

Authors 12
  1. Reinhard Rauhut (first)
  2. Patrizia Fabrizio (additional)
  3. Olexandr Dybkov (additional)
  4. Klaus Hartmuth (additional)
  5. Vladimir Pena (additional)
  6. Ashwin Chari (additional)
  7. Vinay Kumar (additional)
  8. Chung-Tien Lee (additional)
  9. Henning Urlaub (additional)
  10. Berthold Kastner (additional)
  11. Holger Stark (additional)
  12. Reinhard Lührmann (additional)
References 74 Referenced 172
  1. 10.1016/j.cell.2009.02.009
  2. 10.1016/j.molcel.2009.09.040
  3. 10.1101/gad.253070.114
  4. 10.1261/rna.033316.112
  5. 10.1128/MCB.16.12.6810
  6. 10.1261/rna.2030510
  7. 10.1038/nsmb.2815
  8. 10.1016/0092-8674(92)90556-R
  9. 10.1016/S0092-8674(00)80925-3
  10. 10.1126/science.aac7629
  11. 10.1038/nature11843
  12. 10.1261/rna.2220705
  13. 10.1038/nature16940
  14. 10.1038/nature14548
  15. 10.1126/science.aad6466
  16. 10.1126/science.aad2085
  17. 10.1038/nsmb.1729
  18. 10.1016/j.molcel.2006.08.021
  19. Absmeier E., Wollenhaupt J., Mozaffari-Jovin S., Becke C., Lee C. T., Preussner M., Heyd F., Urlaub H., Lührmann R., Santos K. F., Wahl M. C., The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation. Genes Dev. 29, 2576–2587 (2015).26637280 (10.1101/gad.271528.115) / Genes Dev. / The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation by Absmeier E. (2015)
  20. 10.1016/j.str.2013.04.017
  21. 10.1261/rna.2456210
  22. 10.1261/rna.1791310
  23. 10.1126/science.1153803
  24. 10.1038/nature12734
  25. 10.1126/science.aac8159
  26. 10.1073/pnas.90.14.6498
  27. 10.1038/nsmb.2270
  28. 10.1016/j.cell.2012.09.033
  29. 10.1126/science.8266094
  30. 10.1016/0092-8674(92)90149-7
  31. 10.1016/j.celrep.2012.08.017
  32. 10.1128/MCB.00801-10
  33. 10.1073/pnas.1314684110
  34. 10.1017/S1355838200000327
  35. 10.1371/journal.pgen.1005539
  36. 10.1128/MCB.23.12.4174-4186.2003
  37. C. Cretu et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 10.1016/j.molcel.2016.08.036 (2016). (10.1016/j.molcel.2016.08.036)
  38. 10.1093/emboj/20.16.4536
  39. 10.1002/j.1460-2075.1996.tb00481.x
  40. 10.1261/rna.5151404
  41. 10.1261/rna.042598.113
  42. 10.1128/MCB.01109-12
  43. 10.1016/j.celrep.2015.09.053
  44. 10.1038/ncomms10615
  45. 10.1038/nrd3823
  46. 10.1038/317735a0
  47. 10.1016/j.bpj.2010.06.032
  48. 10.1016/j.sbi.2006.03.010
  49. 10.1016/j.sbi.2010.01.012
  50. 10.1126/science.aag0291
  51. 10.1111/j.1742-4658.2011.08387.x
  52. 10.1128/MCB.00035-13
  53. 10.1128/MCB.11.11.5571
  54. 10.1038/nmeth.3493
  55. 10.1017/S1355838200992483
  56. 10.1038/nprot.2013.168
  57. 10.1038/nmeth.2099
  58. 10.1006/jsbi.1996.0004
  59. 10.1016/S1047-8477(03)00069-8
  60. 10.1016/j.jsb.2012.09.006
  61. 10.1002/jcc.20084
  62. 10.1107/S0907444910007493
  63. 10.1107/S0907444909052925
  64. 10.1093/nar/gkm216
  65. 10.1128/MCB.05266-11
  66. 10.1038/emboj.2012.7
  67. 10.1107/S1399004715001005
  68. 10.1002/anie.201412210
  69. 10.1261/rna.2119903
  70. 10.1038/sj.emboj.7600482
  71. 10.1038/nsmb.2889
  72. 10.1093/nar/gkn894
  73. 10.1016/j.jmb.2008.10.087
  74. 10.1038/emboj.2010.102
Dates
Type When
Created 8 years, 11 months ago (Aug. 25, 2016, 10:20 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 12:21 p.m.)
Indexed 3 months ago (May 18, 2025, 6:22 p.m.)
Issued 8 years, 11 months ago (Sept. 23, 2016)
Published 8 years, 11 months ago (Sept. 23, 2016)
Published Print 8 years, 11 months ago (Sept. 23, 2016)
Funders 1
  1. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. SFB 860

@article{Rauhut_2016, title={Molecular architecture of the Saccharomyces cerevisiae activated spliceosome}, volume={353}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aag1906}, DOI={10.1126/science.aag1906}, number={6306}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Rauhut, Reinhard and Fabrizio, Patrizia and Dybkov, Olexandr and Hartmuth, Klaus and Pena, Vladimir and Chari, Ashwin and Kumar, Vinay and Lee, Chung-Tien and Urlaub, Henning and Kastner, Berthold and Stark, Holger and Lührmann, Reinhard}, year={2016}, month=sep, pages={1399–1405} }