Abstract
To thermalize, or not to thermalize? Intuition tells us that an isolated physical system subjected to a sudden change (i.e., quenching) will evolve in a way that maximizes its entropy. If the system is in a pure, zero-entropy quantum state, it is expected to remain so even after quenching. How do we then reconcile statistical mechanics with quantum laws? To address this question, Kaufman et al. used their quantum microscope to study strings of six rubidium atoms confined in the wells of an optical lattice (see the Perspective by Polkovnikov and Sels). When tunneling along the strings was suddenly switched on, the strings as a whole remained in a pure state, but smaller subsets of two or three atoms conformed to a thermal distribution. The force driving the thermalization was quantum entanglement. Science , this issue p. 794 ; see also p. 752
References
46
Referenced
892
- J. J. Sakurai Modern Quantum Mechanics (Addison Wesley Longman 1993).
10.1088/1742-5468/2005/04/P04010
10.1103/RevModPhys.80.517
10.1103/PhysRevLett.109.020505
- SchachenmayerJ.LanyonB. P.RoosC. F.DaleyA. J., Entanglement growth in quench dynamics with variable range interactions. Phys. Rev. X 3, 031015 (2013). / Phys. Rev. X / Entanglement growth in quench dynamics with variable range interactions by Schachenmayer J. (2013)
10.1103/PhysRevA.43.2046
10.1038/nature06838
10.1038/nphys3215
10.1103/PhysRevLett.54.1879
10.1103/PhysRevE.50.888
10.1103/PhysRevE.86.010102
10.1103/PhysRevE.87.042135
- D’AlessioL.KafriY.PolkovnikovA.RigolM. https://arxiv.org/abs/1509.06411v1 (2015).
- NeillC.RoushanP.FangM.ChenY.KolodrubetzM.ChenZ.MegrantA.BarendsR.CampbellB.ChiaroB.DunsworthA.JeffreyE.KellyJ.MutusJ.O'MalleyP. J. J.QuintanaC.SankD.VainsencherA.WennerJ.WhiteT. C.PolkovnikovA.MartinisJ. M. https://arxiv.org/abs/1601.00600 (2016).
- ClosG.PorrasD.WarringU.SchaetzT. http://arxiv.org/abs/1509.07712 (2015).
10.1038/nphys2232
10.1038/nphys2739
10.1088/1367-2630/16/5/053034
10.1126/science.1257026
10.1146/annurev-conmatphys-031214-014726
10.1126/science.1192368
10.1038/nature09378
10.1364/OE.24.013881
10.1038/nature15750
10.1038/35005011
10.1103/PhysRevA.72.042335
10.1103/PhysRevA.90.063622
10.1103/RevModPhys.81.865
10.1103/PhysRevA.54.1838
10.1038/nature10748
10.1038/nature13450
10.1088/1742-5468/2004/06/P06002
10.1103/RevModPhys.82.277
- GarrisonJ. R.GroverT. https://arxiv.org/abs/1503.00729 (2015).
10.1103/PhysRevA.92.042308
10.1103/PhysRevLett.100.070502
10.1103/PhysRevLett.71.1291
- K. Hyungwon “Quantum nonequilibrium dynamics: Transport entanglement and thermalization ” thesis Princeton University (2014).
10.1021/jp109388x
- S. K. Ma Statistical Mechanics (World Scientific 1985).
- K. Huang Statistical Mechanics (John Wiley and Sons 1963).
10.1038/nature04693
10.1103/PhysRevB.77.064426
10.1103/PhysRevLett.109.017202
10.1103/PhysRevLett.110.260601
10.1126/science.aaa7432
Funders
4
NSF
10.13039/100000001
National Science FoundationRegion: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Gordon and Betty Moore Foundation
10.13039/100000936
Region: Americas
pri (Trusts, charities, foundations (both public and private))
Labels
5
- Moore Foundation
- GORDON E. & BETTY I. MOORE FOUNDATION
- GORDON E. AND BETTY I. MOORE FOUNDATION
- Gordon & Betty Moore Foundation
- GBMF
Awards
1
- GBMF3795
Air Force Office of Scientific Research
10.13039/100000181
Region: Americas
gov (National government)
Labels
4
- AF Office of Scientific Research
- US Air Force Office of Scientific Research
- United States Air Force Office of Scientific Research
- AFOSR
Army Research Office
10.13039/100000183
Region: Americas
gov (National government)
Labels
5
- U.S. Army Research Office
- United States Army Research Office
- U.S. Army Research Laboratory's Army Research Office
- ARL's Army Research Office
- ARO
@article{Kaufman_2016, title={Quantum thermalization through entanglement in an isolated many-body system}, volume={353}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aaf6725}, DOI={10.1126/science.aaf6725}, number={6301}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Kaufman, Adam M. and Tai, M. Eric and Lukin, Alexander and Rispoli, Matthew and Schittko, Robert and Preiss, Philipp M. and Greiner, Markus}, year={2016}, month=aug, pages={794–800} }