Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

To thermalize, or not to thermalize? Intuition tells us that an isolated physical system subjected to a sudden change (i.e., quenching) will evolve in a way that maximizes its entropy. If the system is in a pure, zero-entropy quantum state, it is expected to remain so even after quenching. How do we then reconcile statistical mechanics with quantum laws? To address this question, Kaufman et al. used their quantum microscope to study strings of six rubidium atoms confined in the wells of an optical lattice (see the Perspective by Polkovnikov and Sels). When tunneling along the strings was suddenly switched on, the strings as a whole remained in a pure state, but smaller subsets of two or three atoms conformed to a thermal distribution. The force driving the thermalization was quantum entanglement. Science , this issue p. 794 ; see also p. 752

Bibliography

Kaufman, A. M., Tai, M. E., Lukin, A., Rispoli, M., Schittko, R., Preiss, P. M., & Greiner, M. (2016). Quantum thermalization through entanglement in an isolated many-body system. Science, 353(6301), 794–800.

Authors 7
  1. Adam M. Kaufman (first)
  2. M. Eric Tai (additional)
  3. Alexander Lukin (additional)
  4. Matthew Rispoli (additional)
  5. Robert Schittko (additional)
  6. Philipp M. Preiss (additional)
  7. Markus Greiner (additional)
References 46 Referenced 892
  1. J. J. Sakurai Modern Quantum Mechanics (Addison Wesley Longman 1993).
  2. 10.1088/1742-5468/2005/04/P04010
  3. 10.1103/RevModPhys.80.517
  4. 10.1103/PhysRevLett.109.020505
  5. SchachenmayerJ.LanyonB. P.RoosC. F.DaleyA. J., Entanglement growth in quench dynamics with variable range interactions. Phys. Rev. X 3, 031015 (2013). / Phys. Rev. X / Entanglement growth in quench dynamics with variable range interactions by Schachenmayer J. (2013)
  6. 10.1103/PhysRevA.43.2046
  7. 10.1038/nature06838
  8. 10.1038/nphys3215
  9. 10.1103/PhysRevLett.54.1879
  10. 10.1103/PhysRevE.50.888
  11. 10.1103/PhysRevE.86.010102
  12. 10.1103/PhysRevE.87.042135
  13. D’AlessioL.KafriY.PolkovnikovA.RigolM. https://arxiv.org/abs/1509.06411v1 (2015).
  14. NeillC.RoushanP.FangM.ChenY.KolodrubetzM.ChenZ.MegrantA.BarendsR.CampbellB.ChiaroB.DunsworthA.JeffreyE.KellyJ.MutusJ.O'MalleyP. J. J.QuintanaC.SankD.VainsencherA.WennerJ.WhiteT. C.PolkovnikovA.MartinisJ. M. https://arxiv.org/abs/1601.00600 (2016).
  15. ClosG.PorrasD.WarringU.SchaetzT. http://arxiv.org/abs/1509.07712 (2015).
  16. 10.1038/nphys2232
  17. 10.1038/nphys2739
  18. 10.1088/1367-2630/16/5/053034
  19. 10.1126/science.1257026
  20. 10.1146/annurev-conmatphys-031214-014726
  21. 10.1126/science.1192368
  22. 10.1038/nature09378
  23. 10.1364/OE.24.013881
  24. 10.1038/nature15750
  25. 10.1038/35005011
  26. 10.1103/PhysRevA.72.042335
  27. 10.1103/PhysRevA.90.063622
  28. 10.1103/RevModPhys.81.865
  29. 10.1103/PhysRevA.54.1838
  30. 10.1038/nature10748
  31. 10.1038/nature13450
  32. 10.1088/1742-5468/2004/06/P06002
  33. 10.1103/RevModPhys.82.277
  34. GarrisonJ. R.GroverT. https://arxiv.org/abs/1503.00729 (2015).
  35. 10.1103/PhysRevA.92.042308
  36. 10.1103/PhysRevLett.100.070502
  37. 10.1103/PhysRevLett.71.1291
  38. K. Hyungwon “Quantum nonequilibrium dynamics: Transport entanglement and thermalization ” thesis Princeton University (2014).
  39. 10.1021/jp109388x
  40. S. K. Ma Statistical Mechanics (World Scientific 1985).
  41. K. Huang Statistical Mechanics (John Wiley and Sons 1963).
  42. 10.1038/nature04693
  43. 10.1103/PhysRevB.77.064426
  44. 10.1103/PhysRevLett.109.017202
  45. 10.1103/PhysRevLett.110.260601
  46. 10.1126/science.aaa7432
Dates
Type When
Created 9 years ago (Aug. 18, 2016, 2:12 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 12:20 p.m.)
Indexed 5 days, 16 hours ago (Aug. 19, 2025, 5:54 a.m.)
Issued 9 years ago (Aug. 19, 2016)
Published 9 years ago (Aug. 19, 2016)
Published Print 9 years ago (Aug. 19, 2016)
Funders 4
  1. NSF 10.13039/100000001 National Science Foundation

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
  2. Gordon and Betty Moore Foundation 10.13039/100000936

    Region: Americas

    pri (Trusts, charities, foundations (both public and private))

    Labels5
    1. Moore Foundation
    2. GORDON E. & BETTY I. MOORE FOUNDATION
    3. GORDON E. AND BETTY I. MOORE FOUNDATION
    4. Gordon & Betty Moore Foundation
    5. GBMF
    Awards1
    1. GBMF3795
  3. Air Force Office of Scientific Research 10.13039/100000181

    Region: Americas

    gov (National government)

    Labels4
    1. AF Office of Scientific Research
    2. US Air Force Office of Scientific Research
    3. United States Air Force Office of Scientific Research
    4. AFOSR
  4. Army Research Office 10.13039/100000183

    Region: Americas

    gov (National government)

    Labels5
    1. U.S. Army Research Office
    2. United States Army Research Office
    3. U.S. Army Research Laboratory's Army Research Office
    4. ARL's Army Research Office
    5. ARO

@article{Kaufman_2016, title={Quantum thermalization through entanglement in an isolated many-body system}, volume={353}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aaf6725}, DOI={10.1126/science.aaf6725}, number={6301}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Kaufman, Adam M. and Tai, M. Eric and Lukin, Alexander and Rispoli, Matthew and Schittko, Robert and Preiss, Philipp M. and Greiner, Markus}, year={2016}, month=aug, pages={794–800} }