Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Better living through water-splitting Chemists have known how to use electricity to split water into hydrogen and oxygen for more than 200 years. Nonetheless, because the electrochemical route is inefficient, most of the hydrogen made nowadays comes from natural gas. Seh et al. review recent progress in electrocatalyst development to accelerate water-splitting, the reverse reactions that underlie fuel cells, and related oxygen, nitrogen, and carbon dioxide reductions. A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other. Science , this issue p. 10.1126/science.aad4998

Bibliography

Seh, Z. W., Kibsgaard, J., Dickens, C. F., Chorkendorff, I., Nørskov, J. K., & Jaramillo, T. F. (2017). Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 355(6321).

Authors 6
  1. Zhi Wei Seh (first)
  2. Jakob Kibsgaard (additional)
  3. Colin F. Dickens (additional)
  4. Ib Chorkendorff (additional)
  5. Jens K. Nørskov (additional)
  6. Thomas F. Jaramillo (additional)
References 174 Referenced 9,855
  1. 10.1126/science.1103197
  2. S.Chu, A.Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). 10.1038/nature1147522895334 (10.1038/nature11475) / Nature / Opportunities and challenges for a sustainable energy future by Chu S. (2012)
  3. 10.1073/pnas.0603395103
  4. “World Energy Outlook 2015” (International Energy Agency 2015).
  5. “The Outlook for Energy: A View to 2040” (Exxon Mobil Corporation 2015).
  6. G. A. Olah A. Goeppert G. K. S. Prakash Beyond Oil and Gas: The Methanol Economy (Wiley-VCH 2009). (10.1002/9783527627806)
  7. J. M.Campos-Martin, G.Blanco-Brieva, J. L. G.Fierro, Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006). 10.1002/anie.20050377917039551 (10.1002/anie.200503779) / Angew. Chem. Int. Ed. / Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process by Campos-Martin J. M. (2006)
  8. “Mineral Commodity Summaries” (U.S. Geological Survey 2015).
  9. Y.Jiao, Y.Zheng, M.Jaroniec, S. Z.Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). 10.1039/C4CS00470A25672249 (10.1039/C4CS00470A) / Chem. Soc. Rev. / Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions by Jiao Y. (2015)
  10. 10.1021/cs500923c
  11. H. A.Gasteiger, S. S.Kocha, B.Sompalli, F. T.Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005). 10.1016/j.apcatb.2004.06.021 (10.1016/j.apcatb.2004.06.021) / Appl. Catal. B / Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs by Gasteiger H. A. (2005)
  12. 10.1126/science.1172083
  13. S.Siahrostami, A.Verdaguer-Casadevall, M.Karamad, D.Deiana, P.Malacrida, B.Wickman, M.Escudero-Escribano, E. A.Paoli, R.Frydendal, T. W.Hansen, I.Chorkendorff, I. E. L.Stephens, J.Rossmeisl, Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). 10.1038/nmat379524240242 (10.1038/nmat3795) / Nat. Mater. / Enabling direct H2O2 production through rational electrocatalyst design by Siahrostami S. (2013)
  14. 10.1021/jz1012627
  15. C. J. M.van der Ham, M. T. M.Koper, D. G. H.Hetterscheid, Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014). 10.1039/C4CS00085D24802308 (10.1039/C4CS00085D) / Chem. Soc. Rev. / Challenges in reduction of dinitrogen by proton and electron transfer by van der Ham C. J. M. (2014)
  16. R.Parsons, The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958). 10.1039/tf9585401053 (10.1039/tf9585401053) / Trans. Faraday Soc. / The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen by Parsons R. (1958)
  17. 10.1149/1.1856988
  18. J.Greeley, M.Mavrikakis, Alloy catalysts designed from first principles. Nat. Mater. 3, 810–815 (2004). 10.1038/nmat122315502837 (10.1038/nmat1223) / Nat. Mater. / Alloy catalysts designed from first principles by Greeley J. (2004)
  19. 10.1038/nmat1752
  20. 10.1021/jp1048887
  21. D.Strmcnik, M.Uchimura, C.Wang, R.Subbaraman, N.Danilovic, D.van der Vliet, A. P.Paulikas, V. R.Stamenkovic, N. M.Markovic, Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013). 10.1038/nchem.157423511418 (10.1038/nchem.1574) / Nat. Chem. / Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption by Strmcnik D. (2013)
  22. 10.2298/JSC131118136D
  23. Y.Huang, R. J.Nielsen, W. A.Goddard3rd, M. P.Soriaga, The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2. J. Am. Chem. Soc. 137, 6692–6698 (2015). 10.1021/jacs.5b0332925941943 (10.1021/jacs.5b03329) / J. Am. Chem. Soc. / The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2 by Huang Y. (2015)
  24. Y.-H.Fang, Z.-P.Liu, Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials. J. Phys. Chem. C 113, 9765–9772 (2009). 10.1021/jp901091a (10.1021/jp901091a) / J. Phys. Chem. C / Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials by Fang Y.-H. (2009)
  25. 10.1016/j.electacta.2010.02.056
  26. Y.-H.Fang, Z.-P.Liu, Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110). J. Am. Chem. Soc. 132, 18214–18222 (2010). 10.1021/ja106927221133410 (10.1021/ja1069272) / J. Am. Chem. Soc. / Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110) by Fang Y.-H. (2010)
  27. K.Chan, J. K.Nørskov, Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015). 10.1021/acs.jpclett.5b0104326266844 (10.1021/acs.jpclett.5b01043) / J. Phys. Chem. Lett. / Electrochemical barriers made simple by Chan K. (2015)
  28. K.Chan, J. K.Nørskov, Potential dependence of electrochemical barriers from ab initio calculations. J. Phys. Chem. Lett. 7, 1686–1690 (2016). 10.1021/acs.jpclett.6b0038227088442 (10.1021/acs.jpclett.6b00382) / J. Phys. Chem. Lett. / Potential dependence of electrochemical barriers from ab initio calculations by Chan K. (2016)
  29. H.Tributsch, J. C.Bennett, Electrochemistry and photochemistry of MoS2 layer crystals. 1. J. Electroanal. Chem. 81, 97–111 (1977). 10.1016/S0022-0728(77)80363-X (10.1016/S0022-0728(77)80363-X) / J. Electroanal. Chem. / Electrochemistry and photochemistry of MoS2 layer crystals. 1 by Tributsch H. (1977)
  30. B.Hinnemann, P. G.Moses, J.Bonde, K. P.Jørgensen, J. H.Nielsen, S.Horch, I.Chorkendorff, J. K.Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005). 10.1021/ja050469015826154 (10.1021/ja0504690) / J. Am. Chem. Soc. / Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution by Hinnemann B. (2005)
  31. C.Tsai, K. R.Chan, J. K.Nørskov, F.Abild-Pedersen, Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015). 10.1016/j.susc.2015.01.019 (10.1016/j.susc.2015.01.019) / Surf. Sci. / Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides by Tsai C. (2015)
  32. 10.1126/science.1141483
  33. J.Kibsgaard, Z.Chen, B. N.Reinecke, T. F.Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). 10.1038/nmat343923042413 (10.1038/nmat3439) / Nat. Mater. / Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis by Kibsgaard J. (2012)
  34. Z.Chen, D.Cummins, B. N.Reinecke, E.Clark, M. K.Sunkara, T. F.Jaramillo, Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011). 10.1021/nl202047621894935 (10.1021/nl2020476) / Nano Lett. / Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials by Chen Z. (2011)
  35. D.Kong, H.Wang, J. J.Cha, M.Pasta, K. J.Koski, J.Yao, Y.Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013). 10.1021/nl400258t23387444 (10.1021/nl400258t) / Nano Lett. / Synthesis of MoS2 and MoSe2 films with vertically aligned layers by Kong D. (2013)
  36. H.Wang, Z.Lu, S.Xu, D.Kong, J. J.Cha, G.Zheng, P.-C.Hsu, K.Yan, D.Bradshaw, F. B.Prinz, Y.Cui, Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U.S.A. 110, 19701–19706 (2013). 10.1073/pnas.131679211024248362 (10.1073/pnas.1316792110) / Proc. Natl. Acad. Sci. U.S.A. / Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction by Wang H. (2013)
  37. Y.Li, H.Wang, L.Xie, Y.Liang, G.Hong, H.Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011). 10.1021/ja201269b21510646 (10.1021/ja201269b) / J. Am. Chem. Soc. / MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction by Li Y. (2011)
  38. M. A.Lukowski, A. S.Daniel, F.Meng, A.Forticaux, L.Li, S.Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013). 10.1021/ja404523s23790049 (10.1021/ja404523s) / J. Am. Chem. Soc. / Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets by Lukowski M. A. (2013)
  39. D.Voiry, M.Salehi, R.Silva, T.Fujita, M.Chen, T.Asefa, V. B.Shenoy, G.Eda, M.Chhowalla, Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013). 10.1021/nl403661s24251828 (10.1021/nl403661s) / Nano Lett. / Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction by Voiry D. (2013)
  40. D.Voiry, H.Yamaguchi, J.Li, R.Silva, D. C. B.Alves, T.Fujita, M.Chen, T.Asefa, V. B.Shenoy, G.Eda, M.Chhowalla, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013). 10.1038/nmat370023832127 (10.1038/nmat3700) / Nat. Mater. / Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution by Voiry D. (2013)
  41. H.Li, C.Tsai, A. L.Koh, L.Cai, A. W.Contryman, A. H.Fragapane, J.Zhao, H. S.Han, H. C.Manoharan, F.Abild-Pedersen, J. K.Nørskov, X.Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016). 10.1038/nmat446526552057 (10.1038/nmat4465) / Nat. Mater. / Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies by Li H. (2016)
  42. D.Merki, S.Fierro, H.Vrubel, X. L.Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011). 10.1039/C1SC00117E (10.1039/C1SC00117E) / Chem. Sci. / Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water by Merki D. (2011)
  43. 10.1021/cs300451q
  44. H. G. S.Casalongue, J. D.Benck, C.Tsai, R. K. B.Karlsson, S.Kaya, M. L.Ng, L. G. M.Pettersson, F.Abild-Pedersen, J. K.Nørskov, H.Ogasawara, T. F.Jaramillo, A.Nilsson, Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction. J. Phys. Chem. C 118, 29252–29259 (2014). 10.1021/jp505394e (10.1021/jp505394e) / J. Phys. Chem. C / Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction by Casalongue H. G. S. (2014)
  45. D.Merki, H.Vrubel, L.Rovelli, S.Fierro, X. L.Hu, Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515–2525 (2012). 10.1039/c2sc20539d (10.1039/c2sc20539d) / Chem. Sci. / Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution by Merki D. (2012)
  46. J.Kristensen, J.Zhang, I.Chorkendorff, J.Ulstrup, B. L.Ooi, Assembled monolayers of Mo3S44+ clusters on well-defined surfaces. Dalton Trans. 2006, 3985–3990 (2006). 10.1039/b608949f17028707 (10.1039/b608949f) / Dalton Trans. / Assembled monolayers of Mo3S4 4+ clusters on well-defined surfaces by Kristensen J. (2006)
  47. T. F.Jaramillo, J.Bonde, J.Zhang, B.-L.Ooi, K.Andersson, J.Ulstrup, I.Chorkendorff, Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 112, 17492–17498 (2008). 10.1021/jp802695e (10.1021/jp802695e) / J. Phys. Chem. C / Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts by Jaramillo T. F. (2008)
  48. 10.1126/science.1215868
  49. J.Kibsgaard, T. F.Jaramillo, F.Besenbacher, Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. Nat. Chem. 6, 248–253 (2014). 10.1038/nchem.185324557141 (10.1038/nchem.1853) / Nat. Chem. / Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters by Kibsgaard J. (2014)
  50. E. J.Popczun, C. G.Read, C. W.Roske, N. S.Lewis, R. E.Schaak, Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427–5430 (2014). 10.1002/anie.20140264624729482 (10.1002/anie.201402646) / Angew. Chem. Int. Ed. / Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles by Popczun E. J. (2014)
  51. J.Kibsgaard, T. F.Jaramillo, Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 14433–14437 (2014). 10.1002/anie.20140822225359678 (10.1002/anie.201408222) / Angew. Chem. Int. Ed. / Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction by Kibsgaard J. (2014)
  52. 10.1039/C4EE02940B
  53. Q.Liu, J.Tian, W.Cui, P.Jiang, N.Cheng, A. M.Asiri, X.Sun, Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. 53, 6710–6714 (2014). 10.1002/anie.20140416124845625 (10.1002/anie.201404161) / Angew. Chem. Int. Ed. / Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution by Liu Q. (2014)
  54. J.Tian, Q.Liu, A. M.Asiri, X.Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 136, 7587–7590 (2014). 10.1021/ja503372r24830333 (10.1021/ja503372r) / J. Am. Chem. Soc. / Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14 by Tian J. (2014)
  55. J.Hao, W.Yang, Z.Zhang, J.Tang, Metal-organic frameworks derived CoxFe1-xP nanocubes for electrochemical hydrogen evolution. Nanoscale 7, 11055–11062 (2015). 10.1039/C5NR01955A26052656 (10.1039/C5NR01955A) / Nanoscale / Metal-organic frameworks derived CoxFe1-xP nanocubes for electrochemical hydrogen evolution by Hao J. (2015)
  56. E. J.Popczun, J. R.McKone, C. G.Read, A. J.Biacchi, A. M.Wiltrout, N. S.Lewis, R. E.Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013). 10.1021/ja403440e23763295 (10.1021/ja403440e) / J. Am. Chem. Soc. / Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction by Popczun E. J. (2013)
  57. J. M.McEnaney, J. C.Crompton, J. F.Callejas, E. J.Popczun, A. J.Biacchi, N. S.Lewis, R. E.Schaak, Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mater. 26, 4826–4831 (2014). 10.1021/cm502035s (10.1021/cm502035s) / Chem. Mater. / Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution by McEnaney J. M. (2014)
  58. J. F.Callejas, J. M.McEnaney, C. G.Read, J. C.Crompton, A. J.Biacchi, E. J.Popczun, T. R.Gordon, N. S.Lewis, R. E.Schaak, Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 8, 11101–11107 (2014). 10.1021/nn504855325250976 (10.1021/nn5048553) / ACS Nano / Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles by Callejas J. F. (2014)
  59. 10.1039/C5EE02179K
  60. F. H.Saadi, A. I.Carim, J. M.Velazquez, J. H.Baricuatro, C. C. L.McCrory, M. P.Soriaga, N. S.Lewis, Operand synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction. ACS Catal. 4, 2866–2873 (2014). 10.1021/cs500412u (10.1021/cs500412u) / ACS Catal. / Operand synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction by Saadi F. H. (2014)
  61. H.Vrubel, X.Hu, Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 51, 12703–12706 (2012). 10.1002/anie.20120711123143996 (10.1002/anie.201207111) / Angew. Chem. Int. Ed. / Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions by Vrubel H. (2012)
  62. 10.1021/acsenergylett.6b00247
  63. W. F.Chen, K.Sasaki, C.Ma, A. I.Frenkel, N.Marinkovic, J. T.Muckerman, Y.Zhu, R. R.Adzic, Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012). 10.1002/anie.20120069922565496 (10.1002/anie.201200699) / Angew. Chem. Int. Ed. / Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets by Chen W. F. (2012)
  64. J. R.McKone, B. F.Sadtler, C. A.Werlang, N. S.Lewis, H. B.Gray, Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166–169 (2013). 10.1021/cs300691m (10.1021/cs300691m) / ACS Catal. / Ni-Mo nanopowders for efficient electrochemical hydrogen evolution by McKone J. R. (2013)
  65. C. C. L.McCrory, S.Jung, I. M.Ferrer, S. M.Chatman, J. C.Peters, T. F.Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015). 10.1021/ja510442p25668483 (10.1021/ja510442p) / J. Am. Chem. Soc. / Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices by McCrory C. C. L. (2015)
  66. T. R.Hellstern, J. D.Benck, J.Kibsgaard, C.Hahn, T. F.Jaramillo, Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater. 6, 1501758 (2016). 10.1002/aenm.201501758 (10.1002/aenm.201501758) / Adv. Energy Mater. / Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes by Hellstern T. R. (2016)
  67. W. A.Hoffert, J. A. S.Roberts, R. M.Bullock, M. L.Helm, Production of H2 at fast rates using a nickel electrocatalyst in water-acetonitrile solutions. Chem. Commun. 49, 7767–7769 (2013). 10.1039/c3cc43203c23743801 (10.1039/c3cc43203c) / Chem. Commun. / Production of H2 at fast rates using a nickel electrocatalyst in water-acetonitrile solutions by Hoffert W. A. (2013)
  68. J.Hou, M.Fang, A. J. P.Cardenas, W. J.Shaw, M. L.Helm, R. M.Bullock, J. A. S.Roberts, M.O’Hagan, Electrocatalytic H2 production with a turnover frequency >107 s-1: The medium provides an increase in rate but not overpotential. Energy Environ. Sci. 7, 4013–4017 (2014). 10.1039/C4EE01899K (10.1039/C4EE01899K) / Energy Environ. Sci. / Electrocatalytic H2 production with a turnover frequency >107 s-1: The medium provides an increase in rate but not overpotential by Hou J. (2014)
  69. H. J. S.Brown, S.Wiese, J. A. S.Roberts, R. M.Bullock, M. L.Helm, Electrocatalytic hydrogen production by [Ni(7PPh2NH)2]2+: Removing the distinction between endo- and exo-protonation sites. ACS Catal. 5, 2116–2123 (2015). 10.1021/cs502132y (10.1021/cs502132y) / ACS Catal. / Electrocatalytic hydrogen production by [Ni(7PPh 2NH)2]2+: Removing the distinction between endo- and exo-protonation sites by Brown H. J. S. (2015)
  70. 10.1149/1.3483106
  71. 10.1021/jp047349j
  72. 10.1021/cs300227s
  73. 10.1093/nsr/nwv023
  74. C. M.Pedersen, M.Escudero-Escribano, A.Velázquez-Palenzuela, L. H.Christensen, I.Chorkendorff, I. E. L.Stephens, Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: Oxygen reduction and hydrogen oxidation in the presence of CO. Electrochim. Acta 179, 647–657 (2015). 10.1016/j.electacta.2015.03.176 (10.1016/j.electacta.2015.03.176) / Electrochim. Acta / Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: Oxygen reduction and hydrogen oxidation in the presence of CO by Pedersen C. M. (2015)
  75. N. M.Markovi, ćR. R. Adzic, B. D. Cahan, E. B. Yeager, Structural effects in electrocatalysis—Oxygen reduction on platinum low-index single-crystal surfaces in perchloric-acid solutions. J. Electroanal. Chem. 377, 249–259 (1994). 10.1016/0022-0728(94)03467-2 (10.1016/0022-0728(94)03467-2) / J. Electroanal. Chem. / Structural effects in electrocatalysis—Oxygen reduction on platinum low-index single-crystal surfaces in perchloric-acid solutions by Markovi N. M. (1994)
  76. M. E.Gamboa-Aldeco, E.Herrero, P. S.Zelenay, A.Wieckowski, Adsorption of bisulfate anion on a Pt(100) electrode—A comparison with Pt(111) and Pt(Poly). J. Electroanal. Chem. 348, 451–457 (1993). 10.1016/0022-0728(93)80151-7 (10.1016/0022-0728(93)80151-7) / J. Electroanal. Chem. / Adsorption of bisulfate anion on a Pt(100) electrode—A comparison with Pt(111) and Pt(Poly) by Gamboa-Aldeco M. E. (1993)
  77. C.Wang, H.Daimon, Y.Lee, J.Kim, S.Sun, Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 129, 6974–6975 (2007). 10.1021/ja070440r17500520 (10.1021/ja070440r) / J. Am. Chem. Soc. / Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction by Wang C. (2007)
  78. Z.Chen, M.Waje, W.Li, Y.Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 46, 4060–4063 (2007). 10.1002/anie.20070089417476642 (10.1002/anie.200700894) / Angew. Chem. Int. Ed. / Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions by Chen Z. (2007)
  79. S.Guo, D.Li, H.Zhu, S.Zhang, N. M.Markovic, V. R.Stamenkovic, S.Sun, FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 3465–3468 (2013). 10.1002/anie.20120987123420804 (10.1002/anie.201209871) / Angew. Chem. Int. Ed. / FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction by Guo S. (2013)
  80. 10.1126/science.1170377
  81. 10.1126/science.aab0801
  82. Z.Peng, H.Yang, Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 131, 7542–7543 (2009). 10.1021/ja902256a19438286 (10.1021/ja902256a) / J. Am. Chem. Soc. / Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures by Peng Z. (2009)
  83. C.Wang, M.Chi, D.Li, D.Strmcnik, D.van der Vliet, G.Wang, V.Komanicky, K.-C.Chang, A. P.Paulikas, D.Tripkovic, J.Pearson, K. L.More, N. M.Markovic, V. R.Stamenkovic, Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 133, 14396–14403 (2011). 10.1021/ja204765521770417 (10.1021/ja2047655) / J. Am. Chem. Soc. / Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces by Wang C. (2011)
  84. S.Chen, P. J.Ferreira, W.Sheng, N.Yabuuchi, L. F.Allard, Y.Shao-Horn, Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: Direct evidence of percolated and sandwich-segregation structures. J. Am. Chem. Soc. 130, 13818–13819 (2008). 10.1021/ja802513y18811156 (10.1021/ja802513y) / J. Am. Chem. Soc. / Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: Direct evidence of percolated and sandwich-segregation structures by Chen S. (2008)
  85. M. H.Shao, K.Sasaki, P.Liu, R. R.Adzic, Pd3Fe and Pt monolayer-modified Pd3Fe electrocatalysts for oxygen reduction. Z. Phys. Chem. 221, 1175–1190 (2007). 10.1524/zpch.2007.221.9-10.1175 (10.1524/zpch.2007.221.9-10.1175) / Z. Phys. Chem. / Pd3Fe and Pt monolayer-modified Pd3Fe electrocatalysts for oxygen reduction by Shao M. H. (2007)
  86. K.Sasaki, L.Zhang, R. R.Adzic, Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys. Chem. Chem. Phys. 10, 159–167 (2008). 10.1039/B709893F18075695 (10.1039/B709893F) / Phys. Chem. Chem. Phys. / Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction by Sasaki K. (2008)
  87. C.Cui, L.Gan, M.Heggen, S.Rudi, P.Strasser, Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013). 10.1038/nmat366823770725 (10.1038/nmat3668) / Nat. Mater. / Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis by Cui C. (2013)
  88. C.Cui, L.Gan, H.-H.Li, S.-H.Yu, M.Heggen, P.Strasser, Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12, 5885–5889 (2012). 10.1021/nl303279523062102 (10.1021/nl3032795) / Nano Lett. / Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition by Cui C. (2012)
  89. P.Mani, R.Srivastava, P.Strasser, Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112, 2770–2778 (2008). 10.1021/jp0776412 (10.1021/jp0776412) / J. Phys. Chem. C / Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes by Mani P. (2008)
  90. S.Koh, M. F.Toney, P.Strasser, Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim. Acta 52, 2765–2774 (2007). 10.1016/j.electacta.2006.08.039 (10.1016/j.electacta.2006.08.039) / Electrochim. Acta / Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR) by Koh S. (2007)
  91. R.Srivastava, P.Mani, N.Hahn, P.Strasser, Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles. Angew. Chem. Int. Ed. 46, 8988–8991 (2007). 10.1002/anie.20070333117893897 (10.1002/anie.200703331) / Angew. Chem. Int. Ed. / Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles by Srivastava R. (2007)
  92. D.Wang, Y.Yu, H. L.Xin, R.Hovden, P.Ercius, J. A.Mundy, H.Chen, J. H.Richard, D. A.Muller, F. J.DiSalvo, H. D.Abruña, Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 12, 5230–5238 (2012). 10.1021/nl302404g22954373 (10.1021/nl302404g) / Nano Lett. / Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts by Wang D. (2012)
  93. V. T.Ho, C.-J.Pan, J.Rick, W.-N.Su, B.-J.Hwang, Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 133, 11716–11724 (2011). 10.1021/ja203956221707063 (10.1021/ja2039562) / J. Am. Chem. Soc. / Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance catalyst for oxygen reduction reaction by Ho V. T. (2011)
  94. Y.Liu, W. E.Mustain, High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J. Am. Chem. Soc. 135, 530–533 (2013). 10.1021/ja307635r23270418 (10.1021/ja307635r) / J. Am. Chem. Soc. / High stability, high activity Pt/ITO oxygen reduction electrocatalysts by Liu Y. (2013)
  95. V.Stamenkovic, B. S.Mun, K. J. J.Mayrhofer, P. N.Ross, N. M.Markovic, J.Rossmeisl, J.Greeley, J. K.Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006). 10.1002/anie.20050438616596688 (10.1002/anie.200504386) / Angew. Chem. Int. Ed. / Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure by Stamenkovic V. (2006)
  96. V. R.Stamenkovic, B. S.Mun, M.Arenz, K. J. J.Mayrhofer, C. A.Lucas, G.Wang, P. N.Ross, N. M.Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007). 10.1038/nmat184017310139 (10.1038/nmat1840) / Nat. Mater. / Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces by Stamenkovic V. R. (2007)
  97. J.Greeley, I. E. L.Stephens, A. S.Bondarenko, T. P.Johansson, H. A.Hansen, T. F.Jaramillo, J.Rossmeisl, I.Chorkendorff, J. K.Nørskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009). 10.1038/nchem.36721378936 (10.1038/nchem.367) / Nat. Chem. / Alloys of platinum and early transition metals as oxygen reduction electrocatalysts by Greeley J. (2009)
  98. 10.1126/science.aad8892
  99. P.Hernandez-Fernandez, F.Masini, D. N.McCarthy, C. E.Strebel, D.Friebel, D.Deiana, P.Malacrida, A.Nierhoff, A.Bodin, A. M.Wise, J. H.Nielsen, T. W.Hansen, A.Nilsson, I. E.Stephens, I.Chorkendorff, Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat. Chem. 6, 732–738 (2014). 25054945 (10.1038/nchem.2001) / Nat. Chem. / Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction by Hernandez-Fernandez P. (2014)
  100. M.Escudero-Escribano, A.Verdaguer-Casadevall, P.Malacrida, U.Grønbjerg, B. P.Knudsen, A. K.Jepsen, J.Rossmeisl, I. E. L.Stephens, I.Chorkendorff, Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. J. Am. Chem. Soc. 134, 16476–16479 (2012). 10.1021/ja306348d22998588 (10.1021/ja306348d) / J. Am. Chem. Soc. / Pt5Gd as a highly active and stable catalyst for oxygen electroreduction by Escudero-Escribano M. (2012)
  101. A.Velázquez-Palenzuela, F.zquez-Palenzuela, A. F.Masini, M.Pedersen, D.Escudero-Escribano, P.Deiana, T. W.Malacrida, D.Hansen, A.Friebel, I. E. L.Nilsson, I.Stephens, Chorkendorff, The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. J. Catal. 328, 297–307 (2015). 10.1016/j.jcat.2014.12.012 (10.1016/j.jcat.2014.12.012) / J. Catal. / The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction by Velázquez-Palenzuela A. (2015)
  102. 10.1126/science.1135941
  103. 10.1126/science.1249061
  104. 10.1126/science.aaa8765
  105. R.Frydendal, E. A.Paoli, B. P.Knudsen, B.Wickman, P.Malacrida, I. E. L.Stephens, I.Chorkendorff, Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses. Chemelectrochem 1, 2075–2081 (2014). 10.1002/celc.201402262 (10.1002/celc.201402262) / Chemelectrochem / Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses by Frydendal R. (2014)
  106. 10.1016/j.jelechem.2006.11.008
  107. C.Iwakura, K.Fukuda, H.Tamura, The anodic evolution of oxygen on platinum oxide electrode in alkaline solutions. Electrochim. Acta 21, 501–508 (1976). 10.1016/0013-4686(76)85139-0 (10.1016/0013-4686(76)85139-0) / Electrochim. Acta / The anodic evolution of oxygen on platinum oxide electrode in alkaline solutions by Iwakura C. (1976)
  108. S.Zhuo, K.Sohlberg, Platinum dioxide phases: Relative thermodynamic stability and kinetics of inter-conversion from first-principles. Physica B 381, 12–19 (2006). 10.1016/j.physb.2005.11.170 (10.1016/j.physb.2005.11.170) / Physica B / Platinum dioxide phases: Relative thermodynamic stability and kinetics of inter-conversion from first-principles by Zhuo S. (2006)
  109. 10.1002/cctc.201000397
  110. 10.1021/jz301414z
  111. 10.1021/jp3126768
  112. B.Han, M.Risch, Y.-L.Lee, C.Ling, H.Jia, Y.Shao-Horn, Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH. Phys. Chem. Chem. Phys. 17, 22576–22580 (2015). 10.1039/C5CP04248H26271910 (10.1039/C5CP04248H) / Phys. Chem. Chem. Phys. / Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH by Han B. (2015)
  113. K. A.Stoerzinger, L.Qiao, M. D.Biegalski, Y.Shao-Horn, Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014). 10.1021/jz500610u26270358 (10.1021/jz500610u) / J. Phys. Chem. Lett. / Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2 by Stoerzinger K. A. (2014)
  114. Y.Lee, J.Suntivich, K. J.May, E. E.Perry, Y.Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012). 10.1021/jz201650726285858 (10.1021/jz2016507) / J. Phys. Chem. Lett. / Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions by Lee Y. (2012)
  115. M.Bernicke, E.Ortel, T.Reier, A.Bergmann, J.Ferreira de Araujo, P.Strasser, R.Kraehnert, Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: Structure-activity relationships. ChemSusChem 8, 1908–1915 (2015). 10.1002/cssc.20140298825958795 (10.1002/cssc.201402988) / ChemSusChem / Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: Structure-activity relationships by Bernicke M. (2015)
  116. H. N.Nong, H.-S.Oh, T.Reier, E.Willinger, M.-G.Willinger, V.Petkov, D.Teschner, P.Strasser, Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. 54, 2975–2979 (2015). 10.1002/anie.201411072 (10.1002/anie.201411072) / Angew. Chem. Int. Ed. / Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting by Nong H. N. (2015)
  117. M.García-Melchor, L.Vilella, N.López, A.Vojvodic, Computationally probing the performance of hybrid, heterogeneous, and homogeneous iridium-based catalysts for water oxidation. ChemCatChem 8, 1792–1798 (2016). 10.1002/cctc.201600007 (10.1002/cctc.201600007) / ChemCatChem / Computationally probing the performance of hybrid, heterogeneous, and homogeneous iridium-based catalysts for water oxidation by García-Melchor M. (2016)
  118. 10.1021/ja407115p
  119. 10.1126/science.aaf5050
  120. J.Landon, E.Demeter, N.İnoğlu, C.Keturakis, I. E.Wachs, R.Vasić, A. I.Frenkel, J. R.Kitchin, Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2, 1793–1801 (2012). 10.1021/cs3002644 (10.1021/cs3002644) / ACS Catal. / Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes by Landon J. (2012)
  121. L.Trotochaud, J. K.Ranney, K. N.Williams, S. W.Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012). 10.1021/ja307507a22991896 (10.1021/ja307507a) / J. Am. Chem. Soc. / Solution-cast metal oxide thin film electrocatalysts for oxygen evolution by Trotochaud L. (2012)
  122. B. M.Hunter, J. D.Blakemore, M.Deimund, H. B.Gray, J. R.Winkler, A. M.Müller, Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 136, 13118–13121 (2014). 10.1021/ja506087h25197774 (10.1021/ja506087h) / J. Am. Chem. Soc. / Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids by Hunter B. M. (2014)
  123. D.Friebel, M. W.Louie, M.Bajdich, K. E.Sanwald, Y.Cai, A. M.Wise, M.-J.Cheng, D.Sokaras, T.-C.Weng, R.Alonso-Mori, R. C.Davis, J. R.Bargar, J. K.Nørskov, A.Nilsson, A. T.Bell, Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015). 10.1021/ja511559d25562406 (10.1021/ja511559d) / J. Am. Chem. Soc. / Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting by Friebel D. (2015)
  124. J. W. D.Ng, M.García-Melchor, M.Bajdich, P.Chakthranont, C.Kirk, A.Vojvodic, T. F.Jaramillo, Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 1, 16053 (2016). 10.1038/nenergy.2016.53 (10.1038/nenergy.2016.53) / Nat. Energy / Gold-supported cerium-doped NiOx catalysts for water oxidation by Ng J. W. D. (2016)
  125. Y.Liang, Y.Li, H.Wang, J.Zhou, J.Wang, T.Regier, H.Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). 10.1038/nmat308721822263 (10.1038/nmat3087) / Nat. Mater. / Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction by Liang Y. (2011)
  126. M.Bajdich, M.García-Mota, A.Vojvodic, J. K.Nørskov, A. T.Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013). 10.1021/ja405997s23944254 (10.1021/ja405997s) / J. Am. Chem. Soc. / Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water by Bajdich M. (2013)
  127. Y.Gorlin, T. F.Jaramillo, A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010). 10.1021/ja104587v20839797 (10.1021/ja104587v) / J. Am. Chem. Soc. / A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation by Gorlin Y. (2010)
  128. 10.1038/nchem.1069
  129. 10.1126/science.1212858
  130. 10.1039/C5CP02834E
  131. 10.1126/science.aaf1525
  132. 10.1126/science.1168049
  133. L.Yang, S.Jiang, Y.Zhao, L.Zhu, S.Chen, X.Wang, Q.Wu, J.Ma, Y.Ma, Z.Hu, Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50, 7132–7135 (2011). 10.1002/anie.20110128721688363 (10.1002/anie.201101287) / Angew. Chem. Int. Ed. / Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction by Yang L. (2011)
  134. J.Zhang, Z.Zhao, Z.Xia, L.Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015). 10.1038/nnano.2015.4825849787 (10.1038/nnano.2015.48) / Nat. Nanotechnol. / A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions by Zhang J. (2015)
  135. R.Frydendal, E. A.Paoli, I.Chorkendorff, J.Rossmeisl, I. E. L.Stephens, Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-stabilized MnO2. Adv. Energy Mater. 5, 1500991 (2015). 10.1002/aenm.201500991 (10.1002/aenm.201500991) / Adv. Energy Mater. / Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-stabilized MnO2 by Frydendal R. (2015)
  136. H. A.Hansen, V.Viswanathan, J. K.Nørskov, Unifying kinetic and thermodynamic analysis of 2e– and 4e– reduction of oxygen on metal surfaces. J. Phys. Chem. C 118, 6706–6718 (2014). 10.1021/jp4100608 (10.1021/jp4100608) / J. Phys. Chem. C / Unifying kinetic and thermodynamic analysis of 2e– and 4e– reduction of oxygen on metal surfaces by Hansen H. A. (2014)
  137. A.Michaelides, P.Hu, A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt. J. Chem. Phys. 114, 513–519 (2001). 10.1063/1.1328746 (10.1063/1.1328746) / J. Chem. Phys. / A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt by Michaelides A. (2001)
  138. H.Ogasawara, B.Brena, D.Nordlund, M.Nyberg, A.Pelmenschikov, L. G. M.Pettersson, A.Nilsson, Structure and bonding of water on Pt(111). Phys. Rev. Lett. 89, 276102 (2002). 10.1103/PhysRevLett.89.27610212513221 (10.1103/PhysRevLett.89.276102) / Phys. Rev. Lett. / Structure and bonding of water on Pt(111) by Ogasawara H. (2002)
  139. T.Schiros, L.-Å.Näslund, K.Andersson, J.Gyllenpalm, G. S.Karlberg, M.Odelius, H.Ogasawara, L. G. M.Pettersson, A.Nilsson, Structure and bonding of the water-hydroxyl mixed phase on Pt(111). J. Phys. Chem. C 111, 15003–15012 (2007). 10.1021/jp073405f (10.1021/jp073405f) / J. Phys. Chem. C / Structure and bonding of the water-hydroxyl mixed phase on Pt(111) by Schiros T. (2007)
  140. H. A.Hansen, J.Rossmeisl, J. K.Nørskov, Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10, 3722–3730 (2008). 10.1039/b803956a18563233 (10.1039/b803956a) / Phys. Chem. Chem. Phys. / Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT by Hansen H. A. (2008)
  141. D.Strmcnik, M.Escudero-Escribano, K.Kodama, V. R.Stamenkovic, A.Cuesta, N. M.Marković, Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat. Chem. 2, 880–885 (2010). 10.1038/nchem.77120861905 (10.1038/nchem.771) / Nat. Chem. / Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide by Strmcnik D. (2010)
  142. A. M.Gómez-Marín, J. M.Feliu, New insights into the oxygen reduction reaction mechanism on Pt(111): A detailed electrochemical study. ChemSusChem 6, 1091–1100 (2013). 10.1002/cssc.20120084723640868 (10.1002/cssc.201200847) / ChemSusChem / New insights into the oxygen reduction reaction mechanism on Pt(111): A detailed electrochemical study by Gómez-Marín A. M. (2013)
  143. A. D.Doyle, J. H.Montoya, A.Vojvodic, Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 7, 738–742 (2015). 10.1002/cctc.201402864 (10.1002/cctc.201402864) / ChemCatChem / Improving oxygen electrochemistry through nanoscopic confinement by Doyle A. D. (2015)
  144. A.Verdaguer-Casadevall, P.Hernandez-Fernandez, I. E. L.Stephens, I.Chorkendorff, S.Dahl, The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum. J. Power Sources 220, 205–210 (2012). 10.1016/j.jpowsour.2012.07.141 (10.1016/j.jpowsour.2012.07.141) / J. Power Sources / The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum by Verdaguer-Casadevall A. (2012)
  145. B. B.Blizanac, P. N.Ross, N. M.Markovic, Oxygen electroreduction on Ag(111): The pH effect. Electrochim. Acta 52, 2264–2271 (2007). 10.1016/j.electacta.2006.06.047 (10.1016/j.electacta.2006.06.047) / Electrochim. Acta / Oxygen electroreduction on Ag(111): The pH effect by Blizanac B. B. (2007)
  146. J. S.Jirkovský, I.Panas, E.Ahlberg, M.Halasa, S.Romani, D. J.Schiffrin, Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011). 10.1021/ja206477z22023652 (10.1021/ja206477z) / J. Am. Chem. Soc. / Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production by Jirkovský J. S. (2011)
  147. T. P.Fellinger, F.Hasché, P.Strasser, M.Antonietti, Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012). 10.1021/ja300038p22339713 (10.1021/ja300038p) / J. Am. Chem. Soc. / Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide by Fellinger T. P. (2012)
  148. Y.Liu, X.Quan, X.Fan, H.Wang, S.Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015). 10.1002/anie.20150239625892325 (10.1002/anie.201502396) / Angew. Chem. Int. Ed. / High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon by Liu Y. (2015)
  149. A.Verdaguer-Casadevall, D.Deiana, M.Karamad, S.Siahrostami, P.Malacrida, T. W.Hansen, J.Rossmeisl, I.Chorkendorff, I. E. L.Stephens, Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014). 10.1021/nl500037x24506229 (10.1021/nl500037x) / Nano Lett. / Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering by Verdaguer-Casadevall A. (2014)
  150. Y.Hori, A.Murata, R.Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. I 85, 2309–2326 (1989). 10.1039/f19898502309 (10.1039/f19898502309) / J. Chem. Soc., Faraday Trans. I / Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution by Hori Y. (1989)
  151. Y.Hori, R.Takahashi, Y.Yoshinami, A.Murata, Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997). 10.1021/jp970284i (10.1021/jp970284i) / J. Phys. Chem. B / Electrochemical reduction of CO at a copper electrode by Hori Y. (1997)
  152. 10.1039/c2ee21234j
  153. 10.1021/jz201461p
  154. C.Shi, H. A.Hansen, A. C.Lausche, J. K.Nørskov, Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720–4727 (2014). 10.1039/c3cp54822h24468980 (10.1039/c3cp54822h) / Phys. Chem. Chem. Phys. / Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces by Shi C. (2014)
  155. 10.1021/ja505791r
  156. 10.1039/c0ee00071j
  157. 10.1126/science.1209786
  158. J. H.Montoya, A. A.Peterson, J. K.Nørskov, Insights into C-C coupling in CO2 electroreduction on copper electrodes. ChemCatChem 5, 737–742 (2013). 10.1002/cctc.201200564 (10.1002/cctc.201200564) / ChemCatChem / Insights into C-C coupling in CO2 electroreduction on copper electrodes by Montoya J. H. (2013)
  159. J. H.Montoya, C.Shi, K.Chan, J. K.Nørskov, Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015). 10.1021/acs.jpclett.5b0072226266498 (10.1021/acs.jpclett.5b00722) / J. Phys. Chem. Lett. / Theoretical insights into a CO dimerization mechanism in CO2 electroreduction by Montoya J. H. (2015)
  160. K. J. P.Schouten, Y.Kwon, C. J. M.van der Ham, Z.Qin, M. T. M.Koper, A new mechanism for the selectivity to C-1 and C-2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011). 10.1039/c1sc00277e (10.1039/c1sc00277e) / Chem. Sci. / A new mechanism for the selectivity to C-1 and C-2 species in the electrochemical reduction of carbon dioxide on copper electrodes by Schouten K. J. P. (2011)
  161. K. J. P.Schouten, Z.Qin, E.Pérez Gallent, M. T. M.Koper, Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012). 10.1021/ja302668n22670713 (10.1021/ja302668n) / J. Am. Chem. Soc. / Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes by Schouten K. J. P. (2012)
  162. E.Bertheussen, A.Verdaguer-Casadevall, D.Ravasio, J. H.Montoya, D. B.Trimarco, C.Roy, S.Meier, J.Wendland, J. K.Nørskov, I. E. L.Stephens, I.Chorkendorff, Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 55, 1450–1454 (2016). 10.1002/anie.20150885126692282 (10.1002/anie.201508851) / Angew. Chem. Int. Ed. / Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper by Bertheussen E. (2016)
  163. C. W.Li, J.Ciston, M. W.Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). 10.1038/nature1324924717429 (10.1038/nature13249) / Nature / Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper by Li C. W. (2014)
  164. 10.1038/317652a0
  165. 10.1126/science.282.5386.98
  166. R.Lan, J. T. S.Irvine, S.Tao, Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 3, 1145 (2013). 10.1038/srep0114523362454 (10.1038/srep01145) / Sci. Rep. / Synthesis of ammonia directly from air and water at ambient temperature and pressure by Lan R. (2013)
  167. K.Kugler, M.Luhn, J. A.Schramm, K.Rahimi, M.Wessling, Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis. Phys. Chem. Chem. Phys. 17, 3768–3782 (2015). 10.1039/C4CP05501B25556769 (10.1039/C4CP05501B) / Phys. Chem. Chem. Phys. / Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis by Kugler K. (2015)
  168. V.Kordali, G.Kyriacou, C.Lambrou, Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674 (2000). 10.1039/b004885m (10.1039/b004885m) / Chem. Commun. / Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell by Kordali V. (2000)
  169. E.Skúlason, T.Bligaard, S.Gudmundsdóttir, F.Studt, J.Rossmeisl, F.Abild-Pedersen, T.Vegge, H.Jónsson, J. K.Nørskov, A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012). 10.1039/C1CP22271F22146855 (10.1039/C1CP22271F) / Phys. Chem. Chem. Phys. / A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction by Skúlason E. (2012)
  170. J. H.Montoya, C.Tsai, A.Vojvodic, J. K.Nørskov, The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 8, 2180–2186 (2015). 10.1002/cssc.20150032226097211 (10.1002/cssc.201500322) / ChemSusChem / The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations by Montoya J. H. (2015)
  171. Y.Abghoui, A. L.Garden, V. F.Hlynsson, S.Björgvinsdóttir, H.Ólafsdóttir, E.Skúlason, Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 17, 4909–4918 (2015). 10.1039/C4CP04838E25446373 (10.1039/C4CP04838E) / Phys. Chem. Chem. Phys. / Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design by Abghoui Y. (2015)
  172. 10.1126/science.1254234
  173. X.Hong, K.Chan, C.Tsai, J. K.Nørskov, How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal. 6, 4428–4437 (2016). 10.1021/acscatal.6b00619 (10.1021/acscatal.6b00619) / ACS Catal. / How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction by Hong X. (2016)
  174. N. B.Halck, V.Petrykin, P.Krtil, J.Rossmeisl, Beyond the volcano limitations in electrocatalysis—Oxygen evolution reaction. Phys. Chem. Chem. Phys. 16, 13682–13688 (2014). 10.1039/c4cp00571f24671166 (10.1039/C4CP00571F) / Phys. Chem. Chem. Phys. / Beyond the volcano limitations in electrocatalysis—Oxygen evolution reaction by Halck N. B. (2014)
Dates
Type When
Created 8 years, 7 months ago (Jan. 12, 2017, 2 p.m.)
Deposited 1 year, 7 months ago (Jan. 15, 2024, 12:20 p.m.)
Indexed 6 hours, 48 minutes ago (Aug. 24, 2025, 4:52 a.m.)
Issued 8 years, 7 months ago (Jan. 13, 2017)
Published 8 years, 7 months ago (Jan. 13, 2017)
Published Print 8 years, 7 months ago (Jan. 13, 2017)
Funders 0

None

@article{Seh_2017, title={Combining theory and experiment in electrocatalysis: Insights into materials design}, volume={355}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aad4998}, DOI={10.1126/science.aad4998}, number={6321}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Seh, Zhi Wei and Kibsgaard, Jakob and Dickens, Colin F. and Chorkendorff, Ib and Nørskov, Jens K. and Jaramillo, Thomas F.}, year={2017}, month=jan }