Abstract
How the bacterial pilus works Many bacteria, including important pathogens, move by projecting grappling-hook–like extensions called type IV pili from their cell bodies. After these pili attach to other cells or objects in their environment, the bacteria retract the pili to pull themselves forward. Chang et al. used electron cryotomography of intact cells to image the protein machines that extend and retract the pili, revealing where each protein component resides. Putting the known structures of the individual proteins in place like pieces of a three-dimensional puzzle revealed insights into how the machine works, including evidence that ATP hydrolysis by cytoplasmic motors rotates a membrane-embedded adaptor that slips pilin subunits back and forth from the membrane onto the pilus. Science , this issue p. 10.1126/science.aad2001
References
99
Referenced
378
10.1038/nrmicro2762
10.1016/j.tim.2012.04.007
10.1146/annurev.micro.56.012302.160938
10.1038/nrmicro885
10.1128/JB.01942-06
10.1038/nrmicro844
10.1046/j.1365-2958.2003.03677.x
10.1046/j.1365-2958.1998.01062.x
10.1111/j.1365-2958.2006.05365.x
10.1038/35024105
10.1073/pnas.121171698
10.1016/j.sbi.2007.12.009
10.1038/sj.emboj.7600200
10.1073/pnas.242523299
10.1128/JB.00396-09
10.1111/j.1365-2958.2008.06197.x
10.1073/pnas.1322889111
10.1016/j.molcel.2006.07.004
10.1146/annurev-micro-092611-150055
10.1038/nbt1172
10.1128/JB.01094-13
10.1111/j.1365-2958.2009.06891.x
10.1111/j.1365-2958.2012.08062.x
10.1371/journal.pone.0070144
10.1128/JB.00032-13
10.1128/JB.00060-07
10.1016/j.jmb.2009.09.034
10.1111/j.1365-2958.2011.07903.x
10.1074/jbc.M111.300624
10.1016/j.jmb.2009.09.037
10.1074/jbc.M111.243535
10.1371/journal.ppat.1002228
10.1073/pnas.1312313110
10.1002/prot.22720
10.1016/j.jsb.2009.03.009
10.1016/j.jmb.2005.02.061
10.1038/sj.emboj.7601544
10.1016/j.jmb.2010.05.066
10.1016/j.str.2007.01.018
10.1016/j.str.2013.06.027
10.1371/journal.ppat.1002923
10.1038/nsmb.1910
10.1016/j.str.2013.09.012
10.1016/j.str.2014.07.005
10.1111/j.1365-2958.1995.mmi_18030547.x
10.1074/jbc.M114.616904
10.1093/emboj/19.10.2221
10.1038/emboj.2011.454
-
TakharH. K.KempK.KimM.HowellP. L.BurrowsL. L. The platform protein is essential for type IV pilus biogenesis. J. Biol. Chem.
288 9721–9728 (2013). 10.1074/jbc.M113.453506
(
10.1074/jbc.M113.453506
) 10.1074/jbc.M504463200
10.1016/S0962-8924(99)01634-7
10.1016/j.bpj.2008.10.017
10.3389/fmicb.2015.00023
10.1073/pnas.0836639100
10.1073/pnas.0911328107
-
LeightonT. L.DayalaniN.SampaleanuL. M.HowellP. L.BurrowsL. L. Novel role for PilNO in type IV pilus retraction revealed by alignment subcomplex mutations. J. Bacteriol.
197 2229–2238 (2015). 10.1128/JB.00220-15
(
10.1128/JB.00220-15
) 10.1038/emboj.2011.186
10.1021/bi5000614
10.1073/pnas.76.11.5952
10.1101/gad.10.6.740
10.1128/JB.01502-07
10.1073/pnas.90.8.3378
10.1099/mic.0.27614-0
10.1128/JB.01793-07
10.1128/jb.179.24.7748-7758.1997
10.1093/nar/gku1223
10.1111/j.1574-6976.2009.00194.x
10.1016/j.jsb.2006.06.005
10.1006/jsbi.1996.0013
10.1093/bioinformatics/btq692
10.1126/science.1128618
10.1126/science.1119052
10.7554/eLife.00792
10.1038/nprot.2015.053
10.1126/science.1199358
10.1016/S0022-2836(02)01246-9
10.1093/nar/gki481
-
RocaboyM.HermanR.SauvageE.RemautH.MoonensK.TerrakM.CharlierP.KerffF., The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain. Mol. Microbiol. 90, 267–277 (2013).23927005
(
10.1111/mmi.12361
) / Mol. Microbiol. / The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain by Rocaboy M. (2013) 10.1021/bi3015345
10.1128/JB.01562-09
10.1128/JB.00720-10
10.1016/j.str.2011.03.004
10.1073/pnas.1222655110
10.1371/journal.pone.0079562
10.1038/nsmb.1426
10.1099/00221287-143-3-713
10.1099/mic.0.2006/002840-0
10.1128/JB.183.15.4435-4450.2001
10.1107/S0907444912050330
10.1128/JB.00648-07
10.1128/JB.187.3.829-839.2005
10.1038/nmeth.2727
10.1016/j.devcel.2013.02.017
10.1038/emboj.2010.114
10.1111/j.1365-2958.2006.05095.x
10.1046/j.1365-2958.1997.1791550.x
10.1128/JB.181.1.24-33.1999
10.1073/pnas.97.16.9098
10.7554/eLife.07380
Dates
Type | When |
---|---|
Created | 9 years, 5 months ago (March 10, 2016, 2:36 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 15, 2024, 12:25 p.m.) |
Indexed | 3 weeks, 4 days ago (July 30, 2025, 9:05 a.m.) |
Issued | 9 years, 5 months ago (March 11, 2016) |
Published | 9 years, 5 months ago (March 11, 2016) |
Published Print | 9 years, 5 months ago (March 11, 2016) |
Funders
4
NIH
10.13039/100000002
National Institutes of HealthRegion: Americas
gov (National government)
Labels
3
- Institutos Nacionales de la Salud
- US National Institutes of Health
- NIH
Awards
1
- R01 GM094800B
Howard Hughes Medical Institute
10.13039/100000011
Region: Americas
pri (Research institutes and centers)
Labels
2
- Howard Hughes Medical Institute Inc
- HHMI
Max Planck Society
10.13039/501100004189
Max-Planck-GesellschaftRegion: Europe
gov (Research institutes and centers)
Labels
4
- Max Planck Society for the Advancement of Science
- Max-Planck-Gesellschaft zur Förderung der Wissenschaften
- Max Planck Society
- MPG
Deutsche Forschungsgemeinschaft
10.13039/501100001659
Region: Europe
gov (National government)
Labels
3
- German Research Association
- German Research Foundation
- DFG
@article{Chang_2016, title={Architecture of the type IVa pilus machine}, volume={351}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aad2001}, DOI={10.1126/science.aad2001}, number={6278}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Chang, Yi-Wei and Rettberg, Lee A. and Treuner-Lange, Anke and Iwasa, Janet and Søgaard-Andersen, Lotte and Jensen, Grant J.}, year={2016}, month=mar }