Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Handwritten characters drawn by a modelNot only do children learn effortlessly, they do so quickly and with a remarkable ability to use what they have learned as the raw material for creating new stuff. Lakeet al.describe a computational model that learns in a similar fashion and does so better than current deep learning algorithms. The model classifies, parses, and recreates handwritten characters, and can generate new letters of the alphabet that look “right” as judged by Turing-like tests of the model's output in comparison to what real humans produce.Science, this issue p.1332

Bibliography

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332–1338.

Authors 3
  1. Brenden M. Lake (first)
  2. Ruslan Salakhutdinov (additional)
  3. Joshua B. Tenenbaum (additional)
References 80 Referenced 1,591
  1. 10.1016/0885-2014(88)90014-7
  2. E. M. Markman Categorization and Naming in Children (MIT Press Cambridge MA 1989).
  3. 10.1037/0033-295X.114.2.245
  4. 10.1162/neco.1992.4.1.1
  5. 10.1109/5.726791
  6. 10.1109/MSP.2012.2205597
  7. Krizhevsky A., Sutskever I., Hinton G. E., Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012). / Adv. Neural Inf. Process. Syst. by Krizhevsky A. (2012)
  8. 10.1038/nature14539
  9. 10.1038/nature14236
  10. 10.1006/jmps.1997.1154
  11. 10.1037/0033-295X.94.2.115
  12. 10.1006/cogp.1994.1010
  13. 10.1016/j.cogpsych.2012.09.003
  14. 10.1145/1968.1972
  15. D. McAllester in Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT) Madison WI 24 to 26 July 1998 (Association for Computing Machinery New York 1998) pp. 230–234. (10.1145/279943.279989)
  16. 10.1109/72.788640
  17. N. D. Goodman J. B. Tenenbaum T. Gerstenberg Concepts: New Directions E. Margolis S. Laurence Eds. (MIT Press Cambridge MA 2015).
  18. 10.1038/nature14541
  19. P. H. Winston The Psychology of Computer Vision P. H. Winston Ed. (McGraw-Hill New York 1975).
  20. Bever T. G., Poeppel D., Biolinguistics 4, 174 (2010). (10.5964/bioling.8783) / Biolinguistics by Bever T. G. (2010)
  21. 10.1111/1467-9280.00403
  22. R. L. Goldstone in Perceptual Organization in Vision: Behavioral and Neural Perspectives R. Kimchi M. Behrmann C. Olson Eds. (Lawrence Erlbaum City NJ 2003) pp. 233–278.
  23. 10.1037/h0062474
  24. 10.1016/j.bbr.2009.08.031
  25. 10.1111/j.1467-7687.2007.00585.x
  26. R. Salakhutdinov J. Tenenbaum A. Torralba in JMLR Workshop and Conference Proceedings vol. 27 Unsupervised and Transfer Learning Workshop I. Guyon G. Dror V. Lemaire G. Taylor D. Silver Eds. (Microtome Brookline MA 2012) pp. 195–206.
  27. 10.1613/jair.731
  28. 10.1162/neco.1989.1.4.541
  29. 10.1109/TPAMI.2012.269
  30. Mansinghka V. K., Kulkarni T. D., Perov Y. N., Tenenbaum J. B., Adv. Neural Inf. Process. Syst. 26, 1520–1528 (2013). / Adv. Neural Inf. Process. Syst. by Mansinghka V. K. (2013)
  31. 10.1109/34.799914
  32. M.-P. Dubuisson A. K. Jain in Proceedings of the 12th IAPR International Conference on Pattern Recognition Vol. 1 Conference A: Computer Vision and Image Processing Jerusalem Israel 9 to 13 October 1994 (IEEE New York 1994) pp. 566–568.
  33. G. Koch R. S. Zemel R. Salakhutdinov paper presented at ICML Deep Learning Workshop Lille France 10 and 11 July 2015.
  34. 10.1109/34.506410
  35. Hinton G. E., Nair V., Adv. Neural Inf. Process. Syst. 19, 515–522 (2006). / Adv. Neural Inf. Process. Syst. by Hinton G. E. (2006)
  36. 10.1561/0600000018
  37. P. Liang M. I. Jordan D. Klein in Proceedings of the 27th International Conference on Machine Learning Haifa Israel 21 to 25 June 2010 (International Machine Learning Society Princeton NJ 2010) pp. 639–646.
  38. 10.1109/TPAMI.2009.167
  39. I. Hwang A. Stuhlm¨ller N. D. Goodman (2011) http://arxiv.org/abs/1110.5667.
  40. E. Dechter J. Malmaud R. P. Adams J. B. Tenenbaum in Proceedings of the 23rd International Joint Conference on Artificial Intelligence F. Rossi Ed. Beijing China 3 to 9 August 2013 (AAAI Press/International Joint Conferences on Artificial Intelligence Menlo Park CA 2013) pp. 1302–1309.
  41. J. Rule E. Dechter J. B. Tenenbaum in Proceedings of the 37th Annual Conference of the Cognitive Science Society D. C. Noelle et al . Eds. Pasadena CA 22 to 25 July 2015 (Cognitive Science Society Austin TX 2015) pp. 2051–2056.
  42. 10.3758/BF03196968
  43. 10.1111/j.1551-6709.2010.01113.x
  44. 10.1037/0096-3445.127.4.331
  45. 10.1016/0010-0277(81)90013-5
  46. 10.1016/j.cognition.2011.11.005
  47. G. A. Miller P. N. Johnson-Laird Language and Perception (Belknap Cambridge MA 1976). (10.4159/harvard.9780674421288)
  48. T. D. Ullman A. Stuhlmuller N. Goodman J. B. Tenenbaum in Proceedings of the 36th Annual Conference of the Cognitive Science Society Quebec City Canada 23 to 26 July 2014 (Cognitive Science Society Austin TX 2014) pp. 1640–1645.
  49. B. M. Lake C.-y. Lee J. R. Glass J. B. Tenenbaum in Proceedings of the 36th Annual Conference of the Cognitive Science Society Quebec City Canada 23 to 26 July 2014 (Cognitive Science Society Austin TX 2014) pp. 803–808.
  50. U. Neisser Cognitive Psychology (Appleton-Century-Crofts New York 1966).
  51. R. Treiman B. Kessler How Children Learn to Write Words (Oxford Univ. Press New York 2014). (10.1093/acprof:oso/9780199907977.001.0001)
  52. 10.1111/j.1467-8624.2009.01408.x
  53. 10.1037/a0021336
  54. S. Dehaene Reading in the Brain (Penguin New York 2009).
  55. 10.2307/1422797
  56. 10.1016/S1053-8119(03)00088-0
  57. 10.1016/j.neuropsychologia.2006.06.026
  58. 10.1037/a0015836
  59. 10.1126/science.1225266
  60. A. Graves (2014) http://arxiv.org/abs/1308.0850.
  61. K. Gregor I. Danihelka A. Graves D. J. Rezende D. Wierstra in Proceedings of the International Conference on Machine Learning (ICML) Lille France 6 to 11 July 2015 (International Machine Learning Society Princeton NJ 2015) pp. 1462–1471.
  62. Chung J., et al.., Adv. Neural Inf. Process. Syst. 28, (2015). / Adv. Neural Inf. Process. Syst. by Chung J. (2015)
  63. 10.1016/0010-0285(73)90005-4
  64. B. M. Lake R. Salakhutdinov J. B. Tenenbaum paper presented at the 34th Annual Conference of the Cognitive Science Society Sapporo Japan 1 to 4 August 2012.
  65. B. M. Lake R. Salakhutdinov J. B. Tenenbaum paper presented at the Advances in Neural Information Processing Systems 26 City Country Dates Month Year.
  66. 10.1080/03640210701802071
  67. T. D. Kulkarni P. Kohli J. B. Tenenbaum V. Mansinghka in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Boston MA 7 to 12 Jule 2015 (IEEE New York 2015) pp. 4390–4399. (10.1109/CVPR.2015.7299068)
  68. 10.1109/34.161346
  69. 10.1016/0031-3203(90)90068-V
  70. B. M. Lake thesis MIT Cambridge MA (2014).
  71. O. Russakovsky et al . ImageNet large scale visual recognition challenge (2014) http://arxiv.org/abs/1409.0575.
  72. Y. Jia et al . “Caffe: Convolutional Architecture for Fast Feature Embedding ” in Proceedings of the 22nd Annual ACM International Conference on Multimedia Orlando FL 3 to 7 November 2014 (ACM New York 2014) pp. 675–678. (10.1145/2647868.2654889)
  73. Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R., Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014). / J. Mach. Learn. Res. / Dropout: A simple way to prevent neural networks from overfitting by Srivastava N. (2014)
  74. S. Chopra R. Hadsell Y. LeCun “Learning a similarity metric discriminatively with application to face verification ” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) San Diego CA 20 to 26 June 2005 (IEEE New York 2005) vol. 1 pp. 539–546. (10.1109/CVPR.2005.202)
  75. 10.1371/journal.pone.0057410
  76. 10.1016/0010-0277(84)90022-2
  77. 10.1214/aos/1176342360
  78. Sethuraman J., A constructive definition of dirichlet priors. Stat. Sin. 3, 639–650 (1994). / Stat. Sin. / A constructive definition of dirichlet priors by Sethuraman J. (1994)
  79. N. D. Goodman V. K. Mansinghka D. M. Roy K. Bonawitz J. B. Tenenbaum “Church: A language for generative models ” in Uncertainty in Artificial Intelligence (2008) pp. 220–229.
  80. T. J. O’Donnell thesis Harvard University Cambridge MA (2011).
Dates
Type When
Created 9 years, 8 months ago (Dec. 13, 2015, 1:05 a.m.)
Deposited 2 months, 3 weeks ago (May 31, 2025, 3:31 p.m.)
Indexed 9 hours, 42 minutes ago (Aug. 24, 2025, 6:54 p.m.)
Issued 9 years, 8 months ago (Dec. 11, 2015)
Published 9 years, 8 months ago (Dec. 11, 2015)
Published Print 9 years, 8 months ago (Dec. 11, 2015)
Funders 6
  1. Office of Naval Research 10.13039/100000006

    Region: Americas

    gov (National government)

    Labels6
    1. U.S. Office of Naval Research
    2. Naval Research
    3. United States Office of Naval Research
    4. U.S. Department of the Navy Office of Naval Research
    5. The Office of Naval Research
    6. ONR
    Awards3
    1. N000141310333
    2. W911NF-08-1-0242
    3. W911NF-13-1-2012
  2. Army Research Office 10.13039/100000183

    Region: Americas

    gov (National government)

    Labels5
    1. U.S. Army Research Office
    2. United States Army Research Office
    3. U.S. Army Research Laboratory's Army Research Office
    4. ARL's Army Research Office
    5. ARO
  3. Canadian Institute for Advanced Research 10.13039/100007631

    Region: Americas

    gov (Research institutes and centers)

    Labels5
    1. L'Institut Canadien de Recherches Avancées
    2. Institut Canadien de Recherches Avancées
    3. The Canadian Institute for Advanced Research
    4. CIFAR
    5. ICRA
  4. Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038

    Region: Americas

    gov (National government)

    Labels3
    1. Conseil de Recherches en Sciences Naturelles et en Génie du Canada
    2. NSERC
    3. CRSNG
  5. NSF Science and Technology Center
    Awards1
    1. CCF-1231216
  6. Moore-Sloan Data Science Environment at NYU

@article{Lake_2015, title={Human-level concept learning through probabilistic program induction}, volume={350}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.aab3050}, DOI={10.1126/science.aab3050}, number={6266}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Lake, Brenden M. and Salakhutdinov, Ruslan and Tenenbaum, Joshua B.}, year={2015}, month=dec, pages={1332–1338} }