Abstract
We show that the physical and electrical structure and hence the inversion charge for crystalline oxides on semiconductors can be understood and systematically manipulated at the atomic level. Heterojunction band offset and alignment are adjusted by atomic-level structural and chemical changes, resulting in the demonstration of an electrical interface between a polar oxide and a semiconductor free of interface charge. In a broader sense, we take the metal oxide semiconductor device to a new and prominent position in the solid-state electronics timeline. It can now be extensively developed using an entirely new physical system: the crystalline oxides–on–semiconductors interface.
References
31
Referenced
292
- D. Kahng M. M. Atalla “Silicon-Silicon Dioxide Field Induced Surface Devices” (IRE Solid-State Device Research Conference Carnegie Institute of Technology Pittsburgh PA 1960).
-
Lucovsky G., et al., Appl. Phys. Lett. 74, 2005 (1999).
(
10.1063/1.123728
) / Appl. Phys. Lett. by Lucovsky G. (1999) -
Lucovsky G., Phillips J. C., Appl. Surf. Sci. 166, 497 (2000).
(
10.1016/S0169-4332(00)00482-7
) / Appl. Surf. Sci. by Lucovsky G. (2000) 10.1103/PhysRevLett.81.3014
-
Jellison G. E., et al., Appl. Opt. 33, 6053 (1994).
(
10.1364/AO.33.006053
) / Appl. Opt. by Jellison G. E. (1994) -
Melloch M. R., et al., Crit. Rev. Solid State 21, 189 (1996).
(
10.1080/10408439608241256
) / Crit. Rev. Solid State by Melloch M. R. (1996) -
McKee R. A., et al., Appl. Phys. Lett. 59, 782 (1991).
(
10.1063/1.105341
) / Appl. Phys. Lett. by McKee R. A. (1991) -
McKee R. A., et al., Appl. Phys. Lett. 63, 2818 (1993).
(
10.1063/1.110297
) / Appl. Phys. Lett. by McKee R. A. (1993) - These data are collected and discussed as supplementary Web material and can be found on Science Online at www.sciencemag.org/cgi/content/full/293/5529/468/DC1.
- R. W. G. Wyckoff Crystal Structures 1 (Interscience New York 1951) chap. VII section a5 and fig. VIIA part 6a.
- R. A. McKee F. J. Walker U.S. Patent 5 830 270 (1998).
-
___, Specht E. D., Jellisen G. E., Boatner L. A., Phys. Rev. Lett. 72, 2741 (1994).
(
10.1103/PhysRevLett.72.2741
) / Phys. Rev. Lett. by ___ (1994) - D. H. Looney U.S. Patent 2 791 758 (1957).
- W. L. Brown U.S. Patent 2 791 759 (1957).
-
N. Arora MOSFET Models for VLSI Circuit Simulation Theory and Practice (Springer-Verlag Wien New York 1993).
(
10.1007/978-3-7091-9247-4
) - F. J. Walker et al. in preparation.
-
Campbell S. A., et al., IEEE Trans. Electron. Dev. 44, 104 (1997).
(
10.1109/16.554800
) / IEEE Trans. Electron. Dev. by Campbell S. A. (1997) -
Copel M., Gribelyuk M., Gusev E., Appl. Phys. Lett. 76, 436 (2000).
(
10.1063/1.125779
) / Appl. Phys. Lett. by Copel M. (2000) -
Eisenbeiser K., et al., Appl. Phys. Lett. 76, 1324 (2000).
(
10.1063/1.126023
) / Appl. Phys. Lett. by Eisenbeiser K. (2000) -
Brews J. R., J. Appl. Phys. 46, 2181 (1975).
(
10.1063/1.321863
) / J. Appl. Phys. by Brews J. R. (1975) - An excellent treatment of MOS dielectric theory and field-effect phenomena in such a device can be found in Nicollian and Brews (see p. 332 for discussion of D it and Δ C ) [E. H. Nicollian J. R. Brews MOS ( Metal Oxide Semiconductor ) Physics and Technology (Wiley New York 1982)].
-
Robertson J., Chen C. W., Appl. Phys. Lett. 74, 1168 (1999).
(
10.1063/1.123476
) / Appl. Phys. Lett. by Robertson J. (1999) -
Robertson J., J. Vac. Sci. Technol. B 18, 1785 (2000).
(
10.1116/1.591472
) / J. Vac. Sci. Technol. B by Robertson J. (2000) -
Chambers S. A., et al., Appl. Phys. Lett. 77, 1662 (2000).
(
10.1063/1.1310209
) / Appl. Phys. Lett. by Chambers S. A. (2000) - R. A. McKee F. J. Walker unpublished data.
-
Merz W. J., Phys. Rev. 95, 690 (1954).
(
10.1103/PhysRev.95.690
) / Phys. Rev. by Merz W. J. (1954) 10.1063/1.1358848
- J. Levy in preparation.
-
Kane B. E., Fortschr. Phys. 48, 1023 (2001).
(
10.1002/1521-3978(200009)48:9/11<1023::AID-PROP1023>3.0.CO;2-J
) / Fortschr. Phys. by Kane B. E. (2001) -
Tershoff J., Phys. Rev. Lett. 52, 465 (1984).
(
10.1103/PhysRevLett.52.465
) / Phys. Rev. Lett. by Tershoff J. (1984) - We thank G. Ice E. Specht and J. Lettieri for careful review of and comments on our manuscript. Sponsored by the Division of Materials Sciences and Engineering Office of Basic Energy Sciences U.S. Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT–Battelle.
Dates
Type | When |
---|---|
Created | 23 years ago (July 27, 2002, 5:39 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 13, 2024, 3:53 a.m.) |
Indexed | 5 days ago (Aug. 19, 2025, 6:09 a.m.) |
Issued | 24 years, 1 month ago (July 20, 2001) |
Published | 24 years, 1 month ago (July 20, 2001) |
Published Print | 24 years, 1 month ago (July 20, 2001) |
@article{McKee_2001, title={Physical Structure and Inversion Charge at a Semiconductor Interface with a Crystalline Oxide}, volume={293}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.293.5529.468}, DOI={10.1126/science.293.5529.468}, number={5529}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={McKee, R. A. and Walker, F. J. and Chisholm, M. F.}, year={2001}, month=jul, pages={468–471} }