10.1126/science.290.5499.2120
Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Metallic molybdenum (Mo o ) wires with diameters ranging from 15 nanometers to 1.0 micrometers and lengths of up to 500 micrometers (0.5 millimeters) were prepared in a two-step procedure. Molybdenum oxide wires were electrodeposited selectively at step edges and then reduced in hydrogen gas at 500°C to yield Mo o . The hemicylindrical wires prepared by this technique were self-uniform, and the wires prepared in a particular electrodeposition (in batches of 10 5 to 10 7 ) were narrowly distributed in diameter. Wires were obtained size selectively because the mean wire diameter was directly proportional to the square root of the electrolysis time. The metal nanowires could be embedded in a polystyrene film and lifted off the graphite electrode surface. The conductivity and mechanical resiliency of individual embedded wires were similar to those of bulk molybdenum.

Bibliography

Zach, M. P., Ng, K. H., & Penner, R. M. (2000). Molybdenum Nanowires by Electrodeposition. Science, 290(5499), 2120–2123.

Authors 3
  1. Michael P. Zach (first)
  2. Kwok H. Ng (additional)
  3. Reginald M. Penner (additional)
References 26 Referenced 576
  1. Foss C. A., Tierney M. J., Martin C. R., J. Phys. Chem. 96, 9001 (1992); (10.1021/j100201a057) / J. Phys. Chem. by Foss C. A. (1992)
  2. Martin C. R., et al., Adv. Mater. 11, 1021 (1999) ; (10.1002/(SICI)1521-4095(199908)11:12<1021::AID-ADMA1021>3.0.CO;2-S) / Adv. Mater. by Martin C. R. (1999)
  3. Sapp S. A., Mitchell D. T., Martin C. R., Chem. Mater. 11, 1183 (1999). (10.1021/cm990001u) / Chem. Mater. by Sapp S. A. (1999)
  4. Preston C. K., Moskovits M., J. Phys. Chem. 97, 8495 (1993); (10.1021/j100134a019) / J. Phys. Chem. by Preston C. K. (1993)
  5. Routkevitch D., Bigioni T., Moskovits M., Xu J. M., J. Phys. Chem. 100, 14037 (1996); (10.1021/jp952910m) / J. Phys. Chem. by Routkevitch D. (1996)
  6. Davydov D. N., et al., Phys. Rev. B 57, 13550 (1998). (10.1103/PhysRevB.57.13550) / Phys. Rev. B by Davydov D. N. (1998)
  7. Sun L., Searson P. C., Chien C. L., Phys. Rev. B 61, R6463 (2000); (10.1103/PhysRevB.61.R6463) / Phys. Rev. B by Sun L. (2000)
  8. Whitney T. M., Jiang J. S., Searson P. C., Chien C. L., Science 261, 1316 (1993); (10.1126/science.261.5126.1316) / Science by Whitney T. M. (1993)
  9. Sun L., Searson P. C., Chien C. L., Appl. Phys. Lett. 74, 2803 (1999). (10.1063/1.124019) / Appl. Phys. Lett. by Sun L. (1999)
  10. Himpsel F. J., et al., MRS Bull. 24, 20 (1999); (10.1557/S0883769400052854) / MRS Bull. by Himpsel F. J. (1999)
  11. Jung T., Schlittler R., Gimzewski J. K., Himpsel F. J., Appl. Phys. A 61, 467 (1995). (10.1007/BF01540248) / Appl. Phys. A by Jung T. (1995)
  12. Petrovykh D. Y., Himpsel F. J., Jung T., Surf. Sci. 407, 189 (1998). (10.1016/S0039-6028(98)00175-7) / Surf. Sci. by Petrovykh D. Y. (1998)
  13. Blanc M., Kuhnke K., Marsico V., Kern K., Surf. Sci. 414, L964 (1998); (10.1016/S0039-6028(98)00561-5) / Surf. Sci. by Blanc M. (1998)
  14. Gambardella P., Blanc M., Brune H., Kuhnke K., Kern K., Phys. Rev. B 61, 2254 (2000). (10.1103/PhysRevB.61.2254) / Phys. Rev. B by Gambardella P. (2000)
  15. Nichols R. J., Kolb D. M., Behm R. J., J. Electroanal. Chem. 313, 109 (1991); (10.1016/0022-0728(91)85174-N) / J. Electroanal. Chem. by Nichols R. J. (1991)
  16. Morin S., Lachenwitzer A., Magnussen O. M., Behm R. J., Phys. Rev. Lett. 83, 5066 (1999). (10.1103/PhysRevLett.83.5066) / Phys. Rev. Lett. by Morin S. (1999)
  17. Abd El Meguid E. A., Berenz P., Baltruschat H., J. Electroanal. Chem. 467, 50 (1999); (10.1016/S0022-0728(99)00092-3) / J. Electroanal. Chem. by Abd El Meguid E. A. (1999)
  18. Dekoster J., et al., Appl. Phys. Lett. 75, 938 (1999). (10.1063/1.124560) / Appl. Phys. Lett. by Dekoster J. (1999)
  19. Zach M. P., Penner R. M., Adv. Mater. 12, 878 (2000). (10.1002/1521-4095(200006)12:12<878::AID-ADMA878>3.0.CO;2-X) / Adv. Mater. by Zach M. P. (2000)
  20. Eq. 1 is readily derived from the expression for the deposition charge associated with the formation of a hemicylindrical solid Q dep = (π r 2 nF ρ l /2 M ). For deposition with a constant current i dep Q dep = i dep t dep . Eq. 1 is then obtained by solving for r ( t ) in this equation.
  21. Reetz M. T., Helbig W., J. Am. Chem. Soc. 116, 7401 (1994); (10.1021/ja00095a051) / J. Am. Chem. Soc. by Reetz M. T. (1994)
  22. 10.1021/ja01167a001
  23. 10.1016/0001-8686(87)80009-X
  24. A more extensive version of Fig. 3 is available at www.sciencemag.org/cgi/content/full/290/5499/2120/DC1.
  25. The lattice parameter for body-centered cubic molybdenum metal is 3.1472 Å. Lattice parameters for monoclinic MoO 2 are a = 5.6096 Å b = 4.857 Å and c = 5.6259 Å and β = 120.912.
  26. This work was funded by the NSF (grant DMR-9876479) and the Petroleum Research Fund of the American Chemical Society (grant 33751-AC5). We also gratefully acknowledge the financial support of the Camille and Henry Dreyfus Foundation. Finally donations of graphite by A. Moore of Advanced Ceramics are gratefully acknowledged.
Dates
Type When
Created 23 years ago (July 27, 2002, 5:52 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 4:26 a.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 8:03 a.m.)
Issued 24 years, 8 months ago (Dec. 15, 2000)
Published 24 years, 8 months ago (Dec. 15, 2000)
Published Print 24 years, 8 months ago (Dec. 15, 2000)
Funders 0

None

@article{Zach_2000, title={Molybdenum Nanowires by Electrodeposition}, volume={290}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.290.5499.2120}, DOI={10.1126/science.290.5499.2120}, number={5499}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Zach, Michael P. and Ng, Kwok H. and Penner, Reginald M.}, year={2000}, month=dec, pages={2120–2123} }