Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

The viability of molecules with planar hexacoordinate carbon atoms is demonstrated by density-functional theory (DFT) calculations for CB 6 2– , a CB 6 H 2 isomer, and three C 3 B 4 minima. All of these species have six π electrons and are aromatic. Although other C 3 B 4 isomers are lower in energy, the activation barriers for the rearrangements of the three planar carbon C 3 B 4 minima into more stable isomers are appreciable, and experimental observation should be possible. High-level ab initio calculations confirm the DFT results. The planar hexacoordination in these species does not violate the octet rule because six partial bonds to the central carbons are involved.

Bibliography

Exner, K., & Schleyer, P. von R. (2000). Planar Hexacoordinate Carbon: A Viable Possibility. Science, 290(5498), 1937–1940.

Authors 2
  1. Kai Exner (first)
  2. Paul von Ragué Schleyer (additional)
References 46 Referenced 300
  1. R. Hoffmann R. W. Alder Ch.
  2. Wilcox F., J. Am. Chem. Soc. 92, 4992 (1970). (10.1021/ja00719a044) / J. Am. Chem. Soc. by Wilcox F. (1970)
  3. Collins J. B., et al., J. Am. Chem. Soc. 98, 5419 (1976). (10.1021/ja00434a001) / J. Am. Chem. Soc. by Collins J. B. (1976)
  4. P. v.
  5. Schleyer R., Boldyrev A. I., J. Chem. Soc. Chem. Commun. 1991, 1536 (1991); (10.1039/C39910001536) / J. Chem. Soc. Chem. Commun. by Schleyer R. (1991)
  6. . The prediction in this paper that molecules like CAl 2 Si 2 would have planar tetracoordinate carbons has been verified experimentally by the detection of the isoelectronic CAl 3 Si − species [
  7. Wang L.-S., Boldyrev A. I., Li X., Simons J., J. Am. Chem. Soc. 122, 7681 (2000)]. (10.1021/ja993081b) / J. Am. Chem. Soc. by Wang L.-S. (2000)
  8. K. Sorger P. v.
  9. Schleyer R., J. Mol. Struct. Theochem 338, 317 (1995). (10.1016/0166-1280(95)04233-V) / J. Mol. Struct. Theochem by Schleyer R. (1995)
  10. Radom L., Rasmussen D. R., Pure Appl. Chem. 70, 1977 (1998). (10.1351/pac199870101977) / Pure Appl. Chem. by Radom L. (1998)
  11. Siebert W., Gunale A., Chem. Soc. Rev. 28, 367 (1999). (10.1039/a801225c) / Chem. Soc. Rev. by Siebert W. (1999)
  12. Röttger D., Erker G., Angew. Chem. Int. Ed. Engl. 36, 813 (1997). (10.1002/anie.199708121) / Angew. Chem. Int. Ed. Engl. by Röttger D. (1997)
  13. Choukroun R., Cassoux P., Acc. Chem. Res. 32, 494 (1999). (10.1021/ar970304z) / Acc. Chem. Res. by Choukroun R. (1999)
  14. Li X., Wang L. S., Boldyrev A. I., Simons J., J. Am. Chem. Soc. 121, 6033 (1999). (10.1021/ja9906204) / J. Am. Chem. Soc. by Li X. (1999)
  15. Sirigu A., Bianchi M., Benedetti E., J. Chem. Soc. Chem. Commun. 1969, 596 (1969). (10.1039/c2969000596a) / J. Chem. Soc. Chem. Commun. by Sirigu A. (1969)
  16. Albano V. G., Sansoni M., Chini P., Matinego S., J. Chem. Soc. Dalton Trans. 1973, 651 (1973). (10.1039/dt9730000651) / J. Chem. Soc. Dalton Trans. by Albano V. G. (1973)
  17. Hogeveen H., Kwant P. W., Acc. Chem. Res. 8, 413 (1975). (10.1021/ar50096a004) / Acc. Chem. Res. by Hogeveen H. (1975)
  18. E. D. Jemmis J. Chandrasekhar E.-U. Würthwein P. v.
  19. Schleyer R., J. Am. Chem. Soc. 104, 4275 (1982). (10.1021/ja00379a051) / J. Am. Chem. Soc. by Schleyer R. (1982)
  20. Lammertsma K., et al., J. Am. Chem. Soc. 105, 5258 (1983). (10.1021/ja00354a013) / J. Am. Chem. Soc. by Lammertsma K. (1983)
  21. P. v.
  22. Schleyer R., Würthwein E.-U., Kaufmann E., Clark T., Pople J. A., J. Am. Chem. Soc. 105, 5930 (1983). (10.1021/ja00356a045) / J. Am. Chem. Soc. by Schleyer R. (1983)
  23. Scherbaum F., Grohmann A., Müller G., Schmidbaur H., Angew. Chem. Int. Ed. Engl. 28, 463 (1989). (10.1002/anie.198904631) / Angew. Chem. Int. Ed. Engl. by Scherbaum F. (1989)
  24. P. v.
  25. Schleyer R., Kapp J., Chem. Phys. Lett. 255, 363 (1996). (10.1016/0009-2614(96)00391-0) / Chem. Phys. Lett. by Schleyer R. (1996)
  26. Gabbai F. P., Schier A., Riede J., Schmidbaur H., Chem. Ber. Recl. 130, 111 (1997). (10.1002/cber.19971300118) / Chem. Ber. Recl. by Gabbai F. P. (1997)
  27. Boldyrev A. I., Simons J., J. Am. Chem. Soc. 120, 7967 (1998). (10.1021/ja981236u) / J. Am. Chem. Soc. by Boldyrev A. I. (1998)
  28. P. v.
  29. Schleyer R., Maerker C., Dransfeld A., Jiao H. J., Hommes N., J. Am. Chem. Soc. 118, 6317 (1996). (10.1021/ja960582d) / J. Am. Chem. Soc. by Schleyer R. (1996)
  30. P. v.
  31. Schleyer R., Jiao H., van Eikema Hommes N. J. R., Malkin V. G., Malkina O. L., J. Am. Chem. Soc. 119, 12669 (1997). (10.1021/ja9719135) / J. Am. Chem. Soc. by Schleyer R. (1997)
  32. An extended bibliography of NICS values is given by S. Patchkovskii and W. Thiel [ J. Mol. Model. 6 67 (2000)].
  33. M. J. Frisch et al. Gaussian 98 (Revision A.7) (Gaussian Pittsburgh PA 1998).
  34. An imaginary frequency indicates the existence of a vibrational mode that is dynamically unstable and leads to a more stable structure. Transition states of a chemical reaction are saddle points exhibiting only one imaginary frequency. Saddle points with more than one imaginary frequency may be visited by dynamical systems with sufficiently high vibrational energy but are generally not of chemical significance.
  35. P. v.
  36. Schleyer R., Jiao H., Glukhovtsev M. N., Chandrasekhar J., Kraka E., J. Am. Chem. Soc. 116, 10129 (1994). (10.1021/ja00101a035) / J. Am. Chem. Soc. by Schleyer R. (1994)
  37. The typical carbon-carbon carbon-boron and boron-boron bond lengths (B3LYP/6-311+G**) are as follows: H 3 C–CH 3 ( D 3 d ) 1.531 Å; H 2 C=CH 2 ( D 2 h ) 1.329 Å; H 3 C–BH 2 ( C s ) 1.554 Å; CH 2 =BH ( C 2 v ) 1.376 Å; H 2 B–BH 2 ( D 2 d ) 1.629 Å; and HB=BH ( D * h ) 1.523 Å.
  38. Bonding was computed at B3LYP/6-31G*//B3LYP/6-311+G*. The Natural Bond Orbital (NBO) implementation in Gaussian 98 cannot handle CB 6 2− at the B3LYP/6-311+G* level (linear-dependent basis set).
  39. The NICS values in parts per million (20–22) (B3LYP/6-311+G**) 1.0/1.5 Å above the central carbons of 13 (−22.8/−9.7) 15 (−22.8/−10.2) 16 (−22.1/−9.9) and 17 (−23.6/−10.9) document the aromatic character of these hexacoordinate carbon species; the values above the center of benzene are −10.2/−7.6.
  40. The concept of the right geometrical “fit” (3) is further demonstrated by species like NB 6 − PB 6 − OB 6 and SB 6 with a cyclic B 6 ligand. These species are isoelectronic with D 6 h symmetrical CB 6 2− ( 13 ) but NB 6 − and SB 6 adopt D 2 h symmetry because of a “minor” bond-length mismatch (but still feature planar hexacoordinate nitrogen and oxygen). In contrast phosphorous and sulfur are too large to fit into the B 6 ring. Consequently C 6 v symmetric structures of PB 6 − and SB 6 result having the “coordinated” atoms positioned above the B 6 plane.
  41. Supplemental material is available at www.sciencemag.org/cgi/content/full/290/5498/1937/DC1.
  42. Isomers 18 and 20 easily rearrange into 19 with barriers of 3.2 ( 18 → 19 ) and 8.9 kcal mol −1 ( 20 → 19 ) respectively.
  43. Lee T. J., Taylor P. R., Int. J. Quant. Chem. Quant. Chem. Symp. 23, 199 (1989). / Int. J. Quant. Chem. Quant. Chem. Symp. by Lee T. J. (1989)
  44. This multireference character was also shown and taken into account by CASSCF(6 10)/6-311+G* calculations. The relative energies of 15 through 17 were reproduced well (13.3 0.0 and 5.5 kcal mol −1 respectively). Although the activation barrier for the isomerization of 15 (33.1 kcal mol −1 ) was almost unchanged as compared to the B3LYP and CCSD(T) calculations the barriers for 16 (8.5 kcal mol −1 ) and 17 (12.8 kcal mol −1 ) were smaller. CAS-MP2 runs with Gaussian 98 gave only “bizarre results ” as has been noted earlier for Gaussian 94 by Th. Bally and W. T. Borden [in Reviews in Computational Chemistry K. B. Lipkowitz D. B. Boyd Eds. (Wiley New York 1999) vol. 13 footnote on p. 36].
  45. Generation of the hexacoordinate carbon compounds by laser vaporization of a suitable target combined with instantaneous cooling of the generated molecules to ∼4 K in a supersonic jet might allow subsequent matrix isolation and/or spectroscopic detection of these exciting species even for 16 and 17 with their lower barriers for isomerization {compare work by V. E. Bondybey A. M. Smith and J. Argreiter [ Chem. Rev. 96 2113 (1996)] and D. S. Perry and G. A. Bethardy [in Techniques of Chemistry Series A. B. Myers Th. R. Rizzo Eds. (Wiley New York 1995) vol. XXIII chap. 3]}.
  46. We thank H. Prinzbach Freiburg for his encouragement. This work was supported by the Fonds der Chemischen Industrie through a postdoctoral fellowship (K.E.).
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:52 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 3:49 a.m.)
Indexed 1 day, 1 hour ago (Aug. 28, 2025, 8:25 a.m.)
Issued 24 years, 8 months ago (Dec. 8, 2000)
Published 24 years, 8 months ago (Dec. 8, 2000)
Published Print 24 years, 8 months ago (Dec. 8, 2000)
Funders 0

None

@article{Exner_2000, title={Planar Hexacoordinate Carbon: A Viable Possibility}, volume={290}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.290.5498.1937}, DOI={10.1126/science.290.5498.1937}, number={5498}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Exner, Kai and Schleyer, Paul von Ragué}, year={2000}, month=dec, pages={1937–1940} }