Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

We demonstrate the controlled and reversible telescopic extension of multiwall carbon nanotubes, thus realizing ultralow-friction nanoscale linear bearings and constant-force nanosprings. Measurements performed in situ on individual custom-engineered nanotubes inside a high-resolution transmission electron microscope demonstrated the anticipated van der Waals energy–based retraction force and enabled us to place quantitative limits on the static and dynamic interwall frictional forces between nested nanotubes. Repeated extension and retraction of telescoping nanotube segments revealed no wear or fatigue on the atomic scale. Hence, these nanotubes may constitute near perfect, wear-free surfaces.

Bibliography

Cumings, J., & Zettl, A. (2000). Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes. Science, 289(5479), 602–604.

Authors 2
  1. John Cumings (first)
  2. A. Zettl (additional)
References 14 Referenced 1,149
  1. 10.1038/354056a0
  2. Kolmogorov A., Crespi V., Bull. Am. Phys. Soc. 45, 254 (2000). / Bull. Am. Phys. Soc. by Kolmogorov A. (2000)
  3. V. H. Crespi P. Zhang P. E. Lammert in Electronic Properties of Novel Materials—Science and Technology of Molecular Nanostructures H. Kuzmany J. Fink M. Mehring S. Roth Eds. (American Institute of Physics College Park MD 1999) pp. 364–368.
  4. 10.1063/1.120680
  5. 10.1126/science.287.5453.637
  6. J. Cumings P. G. Collins A. Zettl Nature in press.
  7. 10.1126/science.283.5407.1513
  8. Benedict L. X., et al., Chem. Phys. Lett. 286, 490 (1998). (10.1016/S0009-2614(97)01466-8) / Chem. Phys. Lett. by Benedict L. X. (1998)
  9. Persson B. N. J., Surf. Sci. Rep. 33, 83 (1999). (10.1016/S0167-5729(98)00009-0) / Surf. Sci. Rep. by Persson B. N. J. (1999)
  10. W. Trimmer Micromechanics and MEMS: Classic and Seminal Papers to 1990 (IEEE Press New York 1997). (10.1109/9780470545263)
  11. Carpick R. W., Ogletree D. F., Salmeron M., Appl. Phys. Lett. 70, 1548 (1997). (10.1063/1.118639) / Appl. Phys. Lett. by Carpick R. W. (1997)
  12. Enachescu M., et al., Phys. Rev. Lett. 81, 1877 (1998). (10.1103/PhysRevLett.81.1877) / Phys. Rev. Lett. by Enachescu M. (1998)
  13. Iijima S., Ajayan P. M., Ichihashi T., Phys. Rev. Lett. 69, 3100 (1992). (10.1103/PhysRevLett.69.3100) / Phys. Rev. Lett. by Iijima S. (1992)
  14. We thank U. Dahmen C. Nelson E. Stach M. L. Cohen and S. G. Louie for helpful interactions. Supported by the Office of Energy Research Office of Basic Energy Sciences Division of Materials Sciences U.S. Department of Energy (contract DE-AC03-76SF00098) and by NSF grants DMR-9801738 and DMR-9501156.
Dates
Type When
Created 23 years ago (July 27, 2002, 5:40 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 5:13 a.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 8:46 a.m.)
Issued 25 years ago (July 28, 2000)
Published 25 years ago (July 28, 2000)
Published Print 25 years ago (July 28, 2000)
Funders 0

None

@article{Cumings_2000, title={Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes}, volume={289}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.289.5479.602}, DOI={10.1126/science.289.5479.602}, number={5479}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Cumings, John and Zettl, A.}, year={2000}, month=jul, pages={602–604} }