Abstract
Genomic evolution has been profoundly influenced by DNA transposition, a process whereby defined DNA segments move freely about the genome. Transposition is mediated by transposases, and similar events are catalyzed by retroviral integrases such as human immunodeficiency virus–1 (HIV-1) integrase. Understanding how these proteins interact with DNA is central to understanding the molecular basis of transposition. We report the three-dimensional structure of prokaryotic Tn 5 transposase complexed with Tn 5 transposon end DNA determined to 2.3 angstrom resolution. The molecular assembly is dimeric, where each double-stranded DNA molecule is bound by both protein subunits, orienting the transposon ends into the active sites. This structure provides a molecular framework for understanding many aspects of transposition, including the binding of transposon end DNA by one subunit and cleavage by a second, cleavage of two strands of DNA by a single active site via a hairpin intermediate, and strand transfer into target DNA.
References
67
Referenced
323
10.1101/SQB.1951.016.01.004
-
Mizuuchi K., Annu. Rev. Biochem. 61, 1011 (1992).
(
10.1146/annurev.bi.61.070192.005051
) / Annu. Rev. Biochem. by Mizuuchi K. (1992) -
___, Genes Cells 2, 1 (1997).
(
10.1046/j.1365-2443.1997.970297.x
) / Genes Cells by ___ (1997) -
Craig N. L., Science 270, 253 (1995).
(
10.1126/science.270.5234.253
) / Science by Craig N. L. (1995) -
Bujacz G., et al., J. Mol. Biol. 253, 333 (1995).
(
10.1006/jmbi.1995.0556
) / J. Mol. Biol. by Bujacz G. (1995) 10.1074/jbc.274.17.11904
-
Yang Z. N., Mueser T. C., Bushman F. D., Hyde C. C., J. Mol. Biol. 296, 535 (2000).
(
10.1006/jmbi.1999.3463
) / J. Mol. Biol. by Yang Z. N. (2000) -
Reznikoff W. S., et al., Biochem. Biophys. Res. Commun. 266, 729 (1999).
(
10.1006/bbrc.1999.1891
) / Biochem. Biophys. Res. Commun. by Reznikoff W. S. (1999) 10.1016/S0092-8674(00)81788-2
10.1074/jbc.274.52.37021
-
Landree M. A., Wibbenmeyer J. A., Roth D. B., Genes Dev. 13, 3059 (1999).
(
10.1101/gad.13.23.3059
) / Genes Dev. by Landree M. A. (1999) -
Kim D. R., Dai Y., Mundy C. L., Yang W., Oettinger M. A., Genes Dev. 13, 3070 (1999).
(
10.1101/gad.13.23.3070
) / Genes Dev. by Kim D. R. (1999) -
Fugmann S. D., Villey I. J., Ptaszek L. M., Schatz D. G., Mol. Cell 5, 97 (2000).
(
10.1016/S1097-2765(00)80406-2
) / Mol. Cell by Fugmann S. D. (2000) -
McBlane J. F., et al., Cell 83, 387 (1995).
(
10.1016/0092-8674(95)90116-7
) / Cell by McBlane J. F. (1995) 10.1038/29457
10.1126/science.271.5255.1592
-
Rice P., Mizuuchi K., Cell 82, 209 (1995).
(
10.1016/0092-8674(95)90308-9
) / Cell by Rice P. (1995) 10.1126/science.7801124
-
Cai M., et al., Nature Struct. Biol. 4, 567 (1997).
(
10.1038/nsb0797-567
) / Nature Struct. Biol. by Cai M. (1997) -
Eijkelenboom A. P., et al., Proteins 36, 556 (1999).
(
10.1002/(SICI)1097-0134(19990901)36:4<556::AID-PROT18>3.0.CO;2-6
) / Proteins by Eijkelenboom A. P. (1999) -
Schumacher S., et al., EMBO J. 16, 7532 (1997).
(
10.1093/emboj/16.24.7532
) / EMBO J. by Schumacher S. (1997) -
van Pouderoyen G., Ketting R. F., Perrakis A., Plasterk R. H., Sixma T. K., EMBO J. 16, 6044 (1997).
(
10.1093/emboj/16.19.6044
) / EMBO J. by van Pouderoyen G. (1997) -
Goryshin I. Y., Reznikoff W. S., J. Biol. Chem. 273, 7367 (1998).
(
10.1074/jbc.273.13.7367
) / J. Biol. Chem. by Goryshin I. Y. (1998) -
Jordan S. R., Whitcombe T. V., Berg J. M., Pabo C. O., Science 230, 1383 (1985).
(
10.1126/science.3906896
) / Science by Jordan S. R. (1985) - Tn 5 transposase E54K/M56A/L372P was purified from the IMPACT intein expression system (New England Biolabs Beverly MA) as described (10) with the exception that sample buffer containing 100 mM hydroxylamine was used as the cleavage reagent. The purified protein consists of the 476–amino acid residue transposase triple mutant with an additional glycine residue at the COOH-terminus. DNA was purchased from Integrated DNA Technologies (Coralville IA) on a 1-μmol scale and was purified by the manufacturer using HPLC. Oligonucleotides were annealed and combined with purified Tn 5 transposase at a molar ratio of protein:DNA of 1:1.5 and dialyzed against 0.3 M KCl 20 mM HEPES (pH 7.7) and 2 mM EDTA. Dialyzed protein/DNA complex was concentrated to ∼10 mg/ml for use in crystallization experiments. The length and sequence of the DNA were screened to produce crystals with optimal diffraction. Only one sequence gave crystals that diffracted beyond 3.5 Å resolution on a laboratory area detector. The DNA in the present structure consists of the OE sequence with an additional G-C base pair at the end distal from the scissile phosphodiester bonds. The sequence of the strand of DNA with the 3′ OH coordinated to the active site is 5′-GACTTGTGTATAAGAGTCAG-3′. Transposase/DNA crystals were grown by micro batch at room temperature. Typically 10 μl of complex was combined with 9 to 11 μl of a mother liquor containing 30% (w/v) PEG 400 100 mM MES (pH 6.0) and 60 mM (NH 4 ) 2 SO 4 . Crystals appeared spontaneously and reached sizes in excess of 0.3 mm by 0.3 mm by 0.2 mm in 10 to 30 days. Crystals belong to the space group P6 5 22 with unit cell parameters of a = b = 113.65 Å and c = 228.08 Å for the native crystal measured at –160°C. For preparation of heavy-atom derivatives and for data collection at cryogenic temperatures crystals were transferred into a synthetic mother liquor/cryoprotectant solution containing 35% PEG 400 40 mM (NH 4 ) 2 SO 4 0.4 M KCl 50 mM MES (pH 6.0) and 10 mM MnCl 2 . The addition of MnCl 2 to crystals improved the diffraction limit of native crystals on a laboratory rotating anode x-ray source from ∼3.4 Å to better than 2.9 Å.
- Selenomethionine-labeled protein was prepared by growing the expression strain of Escherichia coli in liquid minimal media with selenomethionine replacing methionine. Labeled protein was purified and crystallized in the same manner as the native transposase except for the inclusion of 2 mM tris (2-carboxyethyl)-phosphine hydrochloride. A ter(pyridine)PtCl derivative containing two heavy atom sites was produced by soaking crystals in a 0.5 mM solution for 12 hours and a uranyl acetate derivative containing three heavy-atom sites was produced from a 36-hour soak at 5 mM. Diffraction data were collected at the Structural Biology Center beamline at the Advanced Photon Source in Argonne IL (Table 1). Data were integrated scanned and reduced with the HKL software (58). Phases from multiple isomorphous replacement were calculated and improved by density modification using CNS version 0.5 (59). The model was built into the resulting electron density map with the program TURBO-FRODO (60). Thereafter the model was improved through cycles of manual model building and refinement by simulated annealing with cross-validated maximum likelihood (61 62) with CNS version 1.0.
10.1016/S0022-2836(05)80134-2
- I. Y. Goryshin data not shown.
- A. Bhasin I. Y. Goryshin W. S. Reznikoff J. Mol. Biol. in press.
-
Weinreich M. D., Mahnke-Braam L., Reznikoff W. S., J. Mol. Biol. 241, 166 (1993).
(
10.1006/jmbi.1994.1486
) / J. Mol. Biol. by Weinreich M. D. (1993) -
Zhou M., Reznikoff W. S., J. Mol. Biol. 271, 362 (1997).
(
10.1006/jmbi.1997.1188
) / J. Mol. Biol. by Zhou M. (1997) - T. A. Naumann and W. S. Reznikoff Proc. Natl. Acad. Sci. U.S.A. in press.
-
Baker T. A., Mizuuchi M., Savilahti H., Mizuuchi K., Cell 74, 723 (1993).
(
10.1016/0092-8674(93)90519-V
) / Cell by Baker T. A. (1993) -
van Gent D. C., Vink C., Groeneger A. A., Plasterk R. H., EMBO J. 12, 3261 (1993).
(
10.1002/j.1460-2075.1993.tb05995.x
) / EMBO J. by van Gent D. C. (1993) -
Ellison V., Gerton J., Vincent K. A., Brown P. O., J. Biol. Chem. 270, 3320 (1995).
(
10.1074/jbc.270.7.3320
) / J. Biol. Chem. by Ellison V. (1995) -
Lavery R., Sklenar H., J. Biomol. Struct. Dyn. 6, 655 (1989).
(
10.1080/07391102.1989.10507728
) / J. Biomol. Struct. Dyn. by Lavery R. (1989) -
Stofer E., Lavery R., Biopolymers 34, 337 (1994).
(
10.1002/bip.360340305
) / Biopolymers by Stofer E. (1994) -
York D., Reznikoff W. S., Nucleic Acids Res. 25, 2153 (1997).
(
10.1093/nar/25.11.2153
) / Nucleic Acids Res. by York D. (1997) -
Jilk R. A., York D., Reznikoff W. S., J. Bacteriol. 178, 1671 (1996).
(
10.1128/jb.178.6.1671-1679.1996
) / J. Bacteriol. by Jilk R. A. (1996) -
Anderson W. F., Takeda Y., Echols H., Matthews B. W., J. Mol. Biol. 130, 507 (1979).
(
10.1016/0022-2836(79)90437-6
) / J. Mol. Biol. by Anderson W. F. (1979) -
Tateno M., et al., Biopolymers 44, 335 (1997).
(
10.1002/(SICI)1097-0282(1997)44:4<335::AID-BIP3>3.0.CO;2-R
) / Biopolymers by Tateno M. (1997) -
Bolland S., Kleckner N., Cell 84, 223 (1996).
(
10.1016/S0092-8674(00)80977-0
) / Cell by Bolland S. (1996) - T. Naumann and W. S. Reznikoff in preparation.
-
Allingham J. S., Pribil P. A., Haniford D. B., J. Mol. Biol. 289, 1195 (1999).
(
10.1006/jmbi.1999.2837
) / J. Mol. Biol. by Allingham J. S. (1999) -
Bujacz G., et al., Structure 14, 89 (1996).
(
10.1016/S0969-2126(96)00012-3
) / Structure by Bujacz G. (1996) -
Goldgur Y., et al., Proc. Natl. Acad. Sci. U.S.A. 95, 9150 (1998).
(
10.1073/pnas.95.16.9150
) / Proc. Natl. Acad. Sci. U.S.A. by Goldgur Y. (1998) 10.1074/jbc.272.29.18161
-
Steitz T. A., Smerdon S. J., Jager J., Joyce C. M., Science 266, 2022 (1994).
(
10.1126/science.7528445
) / Science by Steitz T. A. (1994) -
Roberts R. J., Cheng X., Annu. Rev. Biochem. 67, 181 (1998).
(
10.1146/annurev.biochem.67.1.181
) / Annu. Rev. Biochem. by Roberts R. J. (1998) -
Rezsohazy R., Hallet B., Delcour J., Mahillon J., Mol. Microbiol. 9, 1283 (1993).
(
10.1111/j.1365-2958.1993.tb01258.x
) / Mol. Microbiol. by Rezsohazy R. (1993) -
Jenkins T. M., Esposito D., Engelman A., Craigie R., EMBO J. 16, 6849 (1997).
(
10.1093/emboj/16.22.6849
) / EMBO J. by Jenkins T. M. (1997) -
Hazuda D. J., et al., Science 287, 646 (2000).
(
10.1126/science.287.5453.646
) / Science by Hazuda D. J. (2000) -
Braam L. M., Goryshin I. Y., Reznikoff W. S., J. Biol. Chem. 274, 86 (1999).
(
10.1074/jbc.274.1.86
) / J. Biol. Chem. by Braam L. M. (1999) - M. Steiniger-White and W. S. Reznikoff J. Biol. Chem. in press.
-
Wiegand T. W., Reznikoff W. S., J. Bacteriol. 174, 1229 (1992).
(
10.1128/jb.174.4.1229-1239.1992
) / J. Bacteriol. by Wiegand T. W. (1992) -
York D., Reznikoff W. S., Nucleic Acids Res. 24, 3790 (1996).
(
10.1093/nar/24.19.3790
) / Nucleic Acids Res. by York D. (1996) -
Isberg R. R., Syvanen M., J. Biol. Chem. 260, 3645 (1985).
(
10.1016/S0021-9258(19)83671-2
) / J. Biol. Chem. by Isberg R. R. (1985) 10.1016/S0076-6879(97)76066-X
10.1107/S0907444998003254
- A. Roussel and C. Cambilau in Silicon Graphics Geometry Partners Directory (Silicon Graphics Mountain View CA 1991) vol. 86.
-
Pannu N. S., Read R. J., Acta Crystallogr. A 52, 659 (1996).
(
10.1107/S0108767396004370
) / Acta Crystallogr. A by Pannu N. S. (1996) 10.1073/pnas.94.10.5018
10.1016/S0076-6879(97)77027-7
-
Read R. J., Acta Crystallogr. A 42, 140 (1986).
(
10.1107/S0108767386099622
) / Acta Crystallogr. A by Read R. J. (1986) -
Cohen G. H., J. Mol. Biol. 190, 593 (1986).
(
10.1016/0022-2836(86)90245-7
) / J. Mol. Biol. by Cohen G. H. (1986) -
___, J. Appl. Crystallogr. 30, 1160 (1997).
(
10.1107/S0021889897006729
) / J. Appl. Crystallogr. by ___ (1997) - We thank L. Mahnke for providing the first samples of purified transposase J. B. Thoden for help in collecting the x-ray data and T. Naumann A. Bhasin M. Steiniger-White and R. Saecker for helpful discussions. We gratefully acknowledge the help of N. Duke F. Rotella and A. Joachimak at the Structural Biology Center Beamline Argonne National Laboratory in collecting the data. This research was supported in part by NIH grants AR35186 (I.R.) and GM50692 (W.S.R.). W.S.R. is a recipient of a Vilas Associates Award and is the Evelyn Mercer Professor of Biochemistry and Molecular Biology. D.R.D. was supported by the NIH Biotechnology Training Grant. The use of the Advanced Photon Source was supported by the U.S. Department of Energy Basic Energy Sciences Office of Energy Research Contract W-31-109-Eng-38. The PDB accession number for the coordinates and structure factors is 1F3I for the transposase/DNA complex.
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 27, 2002, 5:35 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 13, 2024, 5:39 a.m.) |
Indexed | 6 days, 18 hours ago (Aug. 30, 2025, 1:02 p.m.) |
Issued | 25 years, 1 month ago (July 7, 2000) |
Published | 25 years, 1 month ago (July 7, 2000) |
Published Print | 25 years, 1 month ago (July 7, 2000) |
@article{Davies_2000, title={Three-Dimensional Structure of the Tn 5 Synaptic Complex Transposition Intermediate}, volume={289}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.289.5476.77}, DOI={10.1126/science.289.5476.77}, number={5476}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Davies, Douglas R. and Goryshin, Igor Y. and Reznikoff, William S. and Rayment, Ivan}, year={2000}, month=jul, pages={77–85} }